1,372 research outputs found

    Different atmospheric moisture divergence responses to extreme and moderate El Niños

    Get PDF
    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST

    Faint young Sun paradox remains

    Full text link
    The Sun was fainter when the Earth was young, but the climate was generally at least as warm as today; this is known as the `faint young Sun paradox'. Rosing et al. [1] claim that the paradox can be resolved by making the early Earth's clouds and surface less reflective. We show that, even with the strongest plausible assumptions, reducing cloud and surface albedos falls short by a factor of two of resolving the paradox. A temperate Archean climate cannot be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author list in original submissio

    Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus

    Get PDF
    Global mean surface warming has stalled since the end of the twentieth century1, 2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3, 4, 5, 6, 7, 8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability

    Recent global-warming hiatus tied to equatorial Pacific surface cooling

    Get PDF
    Despite the continued increase of atmospheric greenhouse gases, the annual-mean global temperature has not risen in this century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus of global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method to unravel mechanisms for global temperature change by prescribing the observed history of sea surface temperature over the deep tropical Pacific in a climate model, in addition to radiative forcing. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with r = 0.97 for 1970-2012 (a period including the current hiatus and an accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern and prolonged drought in southern North America. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La Niña-like decadal cooling. While similar decadal hiatus events may occur in the future, multi-decadal warming trend is very likely to continue with greenhouse gas increase

    DADA: data assimilation for the detection and attribution of weather and climate-related events

    Get PDF
    A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures

    The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM

    Get PDF
    Recent studies have indicated that ocean circulation damps the atmospheric energy transport response to hemispherically differential energy perturbations, thereby muting the shifts of the Inter-Tropical Convergence Zone (ITCZ). Here, we focus on the potential role of Ekman heat transport in modulating this atmospheric response. An idealized representation of Ekman-driven heat transport (FE) is included in an aquaplanet slab ocean coupled to a gray radiation atmospheric model. We first alter the strength of FE in the control climate by tuning the gross stability of the Ekman layer SE. For a wide range of FE, the total poleward transport of energy remains nearly unchanged, but the ocean transports an increasing share for larger SE. The control climate is then perturbed by adding surface cooling in the Southern Hemisphere and warming in the Northern Hemisphere. The Ekman coupling damps the atmospheric energy transport response, as in previous coupled model experiments with full ocean dynamics. The ratio of the changes in Ekman to atmospheric energy transport is determined by the ratio of the gross stability in the Ekman layer to the atmosphere in the control climate, and is insensitive to the amplitude and location of forcing. We find that an unrealistically large SE is needed to reproduce the ratio of the changes in cross-equatorial oceanic to atmospheric energy transport in fully coupled models. The limited damping effect of Ekman transport highlights the need to examine the roles of deep circulation and subtropical gyres, as well as ocean heat uptake processes
    corecore