5,285 research outputs found

    Variational methods for He-4 using a modern He-He potential

    Get PDF
    The two-body potential HFD-B3-FC11 for He-He interactions proposed by Aziz and collaborators is analyzed using the variational Monte Carlo method. Complementary work using the Green's function Monte Carlo method is presented as well. The importance of three-body effects in the description of the interactions are considered and good evidence is presented for using a potential that takes into account these effects even at the equilibrium density of systems of He-4 atoms. An examination of the most usual trial functions forms employed in the studies of these systems, some experiments with other correlation factors, and some methodological notes complete this investigation. [S0163-1829(99)02741-1].6017123421234

    Immersive Neural Graphics Primitives

    Full text link
    Neural radiance field (NeRF), in particular its extension by instant neural graphics primitives, is a novel rendering method for view synthesis that uses real-world images to build photo-realistic immersive virtual scenes. Despite its potential, research on the combination of NeRF and virtual reality (VR) remains sparse. Currently, there is no integration into typical VR systems available, and the performance and suitability of NeRF implementations for VR have not been evaluated, for instance, for different scene complexities or screen resolutions. In this paper, we present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR allowing users to freely move their heads to explore complex real-world scenes. We evaluate our framework by benchmarking three different NeRF scenes concerning their rendering performance at different scene complexities and resolutions. Utilizing super-resolution, our approach can yield a frame rate of 30 frames per second with a resolution of 1280x720 pixels per eye. We discuss potential applications of our framework and provide an open source implementation online.Comment: Submitted to IEEE VR, currently under revie

    Atopic eczema in adulthood and mortality: UK population–based cohort study, 1998-2016

    Get PDF
    BACKGROUND: Atopic eczema affects up to 10% of adults and is becoming more common globally. Few studies have assessed whether atopic eczema increases the risk of death. OBJECTIVE: We aimed to determine whether adults with atopic eczema were at increased risk of death overall and by specific causes and to assess whether the risk varied by atopic eczema severity and activity. METHODS: The study was a population-based matched cohort study using UK primary care electronic health care records from the Clinical Practice Research Datalink with linked hospitalization data from Hospital Episode Statistics and mortality data from the Office for National Statistics from 1998 to 2016. RESULTS: A total of 526,736 patients with atopic eczema were matched to 2,567,872 individuals without atopic eczema. The median age at entry was 41.8 years, and the median follow-up time was 4.5 years. There was limited evidence of increased hazard for all-cause mortality in those with atopic eczema (hazard ratio = 1.04; 99% CI = 1.03-1.06), but there were somewhat stronger associations (8%-14% increased hazard) for deaths due to infectious, digestive, and genitourinary causes. Differences on the absolute scale were modest owing to low overall mortality rates. Mortality risk increased markedly with eczema severity and activity. For example, patients with severe atopic eczema had a 62% increased hazard (hazard ratio = 1.62; 99% CI = 1.54-1.71) for mortality compared with those without eczema, with the strongest associations for infectious, respiratory, and genitourinary causes. CONCLUSION: The increased hazards for all-cause and cause-specific mortality were largely restricted to those with the most severe or predominantly active atopic eczema. Understanding the reasons for these increased hazards for mortality is an urgent priority

    Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis

    Get PDF
    Introduction: The food-borne Gram-negative bacterial pathogen Campylobacter jejuni may cause the acute enterocolitis syndrome campylobacteriosis in infected humans. Given that human C. jejuni infections are rising globally which hold also true for resistance rates against antibiotic compounds such as macrolides and fluoroquinolones frequently prescribed for the treatment of severe infectious enteritis, novel antibiotics-independent therapeutic strategies are needed. Distinct organic acids are well known for their health-beneficial including anti-microbial and immunomodulatory properties. In our present study, we investigated potential pathogen-lowering and anti-inflammatory effects of benzoic acid, butyric acid, caprylic acid, and sorbic acid either alone or in combination during acute murine campylobacteriosis. Methods: Therefore, secondary abiotic IL-10(-/-) mice were perorally infected with C. jejuni strain 81-176 and subjected to a 4-day-course of respective organic acid treatment. Results and discussion: On day 6 post-infection, mice from the combination cohort displayed slightly lower pathogen loads in the duodenum, but neither in the stomach, ileum nor large intestine. Remarkably, the clinical outcome of C. jejuni induced acute enterocolitis was significantly improved after combined organic acid treatment when compared to the placebo control group. In support, the combinatory organic acid treatment dampened both, macroscopic and microscopic inflammatory sequelae of C. jejuni infection as indicated by less colonic shrinkage and less pronounced histopathological including apoptotic epithelial cell changes in the colon on day 6 post-infection. Furthermore, mice from the combination as compared to placebo cohort exhibited lower numbers of innate and adaptive immune cells such as neutrophilic granulocytes, macrophages, monocytes, and T lymphocytes in their colonic mucosa and lamina propria, respectively, which also held true for pro-inflammatory cytokine secretion in the large intestines and mesenteric lymph nodes. Notably, the anti-inflammatory effects were not restricted to the intestinal tract, but could also be observed systemically given pro-inflammatory mediator concentrations in C. jejuni infected mice from the combination organic acid treatment that were comparable to basal values. In conclusion, our in vivo study provides first evidence that an oral application of distinct organic acids in combination exhibits pronounced anti-inflammatory effects and hence, constitutes a promising novel antibiotics-independent therapeutic strategy in the combat of acute campylobacteriosis

    Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion

    Get PDF
    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of predicting and simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred

    Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA

    Get PDF
    HGF (hepatocyte growth factor) is a pleiotropic cytokine homologous to the serine protease zymogen plasminogen that requires canonical proteolytic cleavage to gain functional activity. The activating proteases are key components of its regulation, but controversy surrounds their identity. Using quantitative analysis we found no evidence for activation by uPA (urokinase plasminogen activator), despite reports that this is a principal activator of pro-HGF. This was unaffected by a wide range of experimental conditions, including the use of various molecular forms of both HGF and uPA, and the presence of uPAR (uPA receptor) or heparin. In contrast the catalytic domains of the TTSPs (type-II transmembrane serine proteases) matriptase and hepsin were highly efficient activators (50% activation at 0.1 and 3.4 nM respectively), at least four orders of magnitude more efficient than uPA. PS-SCL (positional-scanning synthetic combinatorial peptide libraries) were used to identify consensus sequences for the TTSPs, which in the case of hepsin corresponded to the pro-HGF activation sequence, demonstrating a high specificity for this reaction. Both TTSPs were also found to be efficient activators at the cell surface. Activation of pro-HGF by PC3 prostate carcinoma cells was abolished by both protease inhibition and matriptase-targeting siRNA (small interfering RNA), and scattering of MDCK (Madin–Darby canine kidney) cells in the presence of pro-HGF was abolished by inhibition of matriptase. Hepsin-transfected HEK (human embryonic kidney)-293 cells also activated pro-HGF. These observations demonstrate that, in contrast with the uPA/uPAR system, the TTSPs matriptase and hepsin are direct pericellular activators of pro-HGF, and that together these proteins may form a pathway contributing to their involvement in pathological situations, including cancer

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study

    Exercise training decreases the load and changes the content of circulating SDS-resistant protein aggregates in patients with heart failure with reduced ejection fraction

    Get PDF
    BackgroundHeart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis.AimTo determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF).MethodsEighteen patients with HFrEF (age: 63.4 +/- 6.5 years; LVEF: 33.4 +/- 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program.ResultsThe exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 +/- 8.9 to 36.1 +/- 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 +/- 27.1 to 59.8 +/- 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with alpha-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 +/- 0.40 to 1.11 +/- 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 +/- 0.54 x 1011 to 1.51 +/- 0.59 x 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program.ConclusionExercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.Fundacao para a Ciencia e a Tecnologia (FCT), POCI-01-0145-FEDER-030011, Fundação para a Ciências e a Tecnologia (FCT) BEX 0554/14 - 6info:eu-repo/semantics/publishedVersio
    corecore