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The two-body potential HFD-B3-FCI1 for He-He interactions proposed by Aziz and collaborators is ana-
lyzed using the variational Monte Carlo method. Complementary work using the Green'’s function Monte Carlo
method is presented as well. The importance of three-body effects in the description of the interactions are
considered and good evidence is presented for using a potential that takes into account these effects even at the
equilibrium density of systems 6He atoms. An examination of the most usual trial functions forms employed
in the studies of these systems, some experiments with other correlation factors, and some methodological
notes complete this investigatiof80163-18289)02741-1

[. INTRODUCTION role of three-body and possible higher interactions. We have
gone beyond simple energy minimizations, and have studied
Until the beginning of the 1980s the most popular potenthe implementation of boundary conditions, analyzed in
tial used to investigate the properties®fe systems was the Some details the basis set method for constructing two-body
Lennard-Jones potentiaL From that time on, theoretical Studzorrelations factors and introduced an analytical form for the
ies have often used a potential of the Hartree-Fock dispersiopseudopotential in these factors. In the triplet term, together
form, the HFDHE2 potential of Aziz and collaboratdr§o- ~ With this analytical form, due to fixed-phase arguments we
day this is one of the most used potentia|s_ Its W|de|y accephave considered a functional form that relies on an exponen-
tance was due in part to Green’s function Monte Car|otia| form rather than the usual Gaussian. For the SyStem at
(GFMO) resultg that has shown how useful it was in com- €quilibrium and for a solid at a density about 20% higher
puting properties in the condensed phase of the helium sydhan the melting one, we give variational parameters for
tems. Small inconsistencies with theoretical results and exmany of the trial functions we have used. We believe that
perimental data were detected sometime ago. QuantugHch technical knowledge will prompt the adoption of the
Monte Carlo Ca]cu|ati0ﬁ3mf the Born-Oppenheimer interac- HFD-B3-FCIl1 potential in future work. If Optlmal trial func-
tion energy have shown that the potentia| barrier was todions are needed for variational and GFMC calculations at
high. It was also shown to be deficient in low temperatureother densities, our parameters can be interpolated and used
predictions of the second virial coefficients and the transpors an initial values for the minimization procedure that will
properties at high temperatures. In fact these properties afBen become easier and faster.
determined primarily by the overestimated repulsive wall. ~In the next section we give a very simple overview of the
This situation prompted revisions of the HFDHE2 poten-HFD-B3'FC|1 interacting pOtential. In Sec. Ill we describe
tial. Since an early attembtto address these difficulties, the trial functions used in this paper, along with a brief dis-
many improvements have been made by the Aziz group itCUSSiOI’] of the basis set method of optimization of two-body
self, for a review see Ref. 5. The series of revisions has led tgorrelations factors. We present the functional forms used in
the so-called HFD-B3-FCI1 potentiél. the triplet term and the motivation to use an exponential
It is our intent in this paper to discuss the HFD-B3-FCI1 form for this term. In addition, an analytical form for the
potential in relation to variational Monte Carlo calculations two-body pseudopotential is introduced. Section IV presents
for systems of4He atoms. For Comp|eteneSS, and Compari_results of our calculations USing the HFD-B3-FClI1 potential
son, we give some GFMC results. The GFMC method for slong with values of the variational parameters. To make
boson system gives the correct ground-state energy subjeg@mparisons, both in liquid and solid phases, we include
only to statistical uncertainties and on the assumed interactesults from the literature for the HFDHE2 potential as well.
ing potential. This raw data, in the sense that it reveals all thé" the last section we discuss our results and draw some
properties and difficulties of this many-body system, allowsconclusions.
one in principle to assess the accuracy of the employed po-
tential. However, our focus here is on developing good trial  Il. THE HFD-B3-FCI1 INTERACTING POTENTIAL
wave functions for variational Monte Carlo calculations. . .
These functions, in turn allow us to systematically improve In _most studies, th? heﬁum systems are assumed to be
and understand the physical correlations produced by the irg_escnbed by the Hamiltonian
teraction potential. Another of our aims is to see the impor- 5 N
tance of the many-body for_ces involved. Since our results are H= i 2 V24 2 V(r:) 2.1)
model dependent, they might help us better understand the 2m i< S !
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where explicit three-body interactions are neglected. The

model potentiaV we want to investigate, the HFD-B3-FCI1
potential, is based on the representation

Eint=AEgscrt AEcor (2.2

where the interaction energy of a dimer is decomposed in
self-consistent field or Hartree-Fock part and in a correlatio
energy for the interaction. This last part is given by

By
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vy(R) =T f(ryj). 3.2

i<j
It explicitly correlates only pairs of particles through the fac-
tor f(r)=e (WU,
A simple form for the correlation factor was introduced
McMillan through a pseudopotential,(r) of the form

_1(b)\® 23
2 o un(M=3|7/ - (3.3
AE =eF(r)S, —2t8 2.3 . . . o
corr = ra*e : This pseudopotentialy,, depends on a single variational pa-
. rameterb.
with For a Lennard-Jones 6—12 two-body potentig,(r)
) =e~ (M2um() js an approximate solution of the two-particle
exp{ _ ( Drm 1) } if r<Dr,,, Schralinger-like equation
1, otherwise. WV2f(r)+[V(r)—>\]f(r)=o, (3.9

The Hartree-Fock repulsion is represented by fittaiy
initio calculations to
AEq=eAexp —ar—|B|r?). (2.5

In the HFDHE2 modern potential only the linear termrin

in the limit of small pair separation. The energy eigenvalue is
discarded and only the dominant term'? is satisfied. Some

of the effect of the remaining particles is taken into account
in a variational calculation by tuning the parameteof Eq.
(3.3). As reported in Ref. 27, the zero-energy numerical so-

was present in the exponential. In subsequent versions of tHetion of Eq. (3.4) is able to produce a radial distribution

He-He potential, a term dependent on a paramgtavas
introduced to assure more flexibility in the fit.

The HFD-B3-FCI1 potential uses the overall damped
Hartree-Fock dispersion fortHFD-B) and mimics very pre-
cise full configuration-interactiofFClI) calculations at inter-

function g(r) on par with a slightly generalized McMillan
pseudopotential. The variational energy obtained with this
pseudopotential was not reported.

The basis set method for quantum liquids and sdlids,
subsequently also called as the Euler Monte Carlo method in

mediate separations. Retardation effects in this potential caiie literature, allows more freedom in simulation studies of
be neglected at the accuracy level we perform our studiedhese systems. The constraint of working with a fixed func-

The position of the energy minimumig,=0.29683 nm with
a well depth ofe/ kg =10.956 K. For comparison the values
for the HFDHE2 potential are,,=0.29673 nm, and/ kg

=10.80K. Since the new potential is slightly deeper and has

a large value forr,,, the well is shifted outwards by a
small amount, o(HFD-B3-FCI1)=0.26413813 nm while
o(HFDHE2=0.2639 nm.

IIl. VARIATIONAL WAVE FUNCTIONS

Trial functions used to investigate quantum liquids and
solids can be written in the general FeenBdmym as

lﬁT(R):H fij H hijc - ¢(R). (3.7
i<j i<j<k

In this form, a wave function is written in terms of explicit
n-body correlations factors, wheregoes up to the number
of particles in the system. In this work we consider two-body
f and three-bodyh factors only. For the liquid state, we
assume a model state=1, where all particles are in a uni-
form condensate. For the solid phase, the model giéehe

tional form of the pseudopotential was eliminated by defin-
ing

p

f(r)= 2, cafa(r),

n=1

(3.9

where thef ,(r) are the spherically symmetric eigenfunction
solutions of the two-particle Schdmger-like equatior{3.4),

and thec, variational parameters. Of course, any suitable
basis could be used as well. Originally the solutibpsvere
required to go smoothly to zero and to have a continuous
derivative at a healing distancg. This distance can be
treated as a variational parameter or eventually made equal
to half the side of the simulation cell. Since we also require
f(r) of Eq. (3.5 to satisfy the continuity conditions, we have
constrained the,, to satisfy

p
1= 21 C. (3.6

This implies that for a basis set witlp+1 elements
(BSy+1), due to the constraint of Eq3.6), the number of

traditional mean field factor, a product of one-body Gaussiail€€ variational parameters for the two-body correlation fac-

terms, that localizes the particles around a given lattice.

A. The pair-product wave function

The simplest wave function that we consider is of the
Jastrow form

tor is only p. In other words, the number of elements in the
basis is greater than the number of variational parameters
by 1.

There are some advantages in using the basis set method
having as basis elements solutions of the two-particle
Schralinger-like equation. In addition to having a physical
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motivation, in the limit of small pair separations, the result- TABLE I. Comparison between two different ways of imposing
ing Jastrow functiorf of Eq. (3.5 is automatically a solution the continuity of a pair-wise trial function and its first derivative.
of the two-body Schrdinger-like equation. Results for the average total ener@y)/N and for the kinetic en-
Despite the well known importance of having the correcterdy(T)/N per particle at the given number of particobtained
functional form for the two-body correlation factor at small at the equilibrium dens_ity and the given potentials. In the rows with
pair separation, this fact is largely neglected in the literaturdh® Symbol, we have imposed the boundary conditions by a poly-
when He-He modern interaction potentials are used. Perhajg@mial fit in the pseudopotentiaPP) of the McMillan form, while
because of its very simple form, and because it contains th@ (e rows with the symbal we make a reflection of this PP at the
basic physical requirements, namely a strong suppression fige of the 5|mul_at|on cefsee Eq.(4.1]. In all cases the varia-
any overlap between any pair of particles and which goesIonal parameteb is equal to 0.307 nm.
smoothly to an uncorrelated pair of as the separation distan

increases, often a pseudopotential of the McMillan form con- (E)N (k) (/N (K N
tinues to be used. However, it is not hard to use the basis set HFDHE2

method or to find an analytical pseudopotential that satisfieg,, —5.717+0.02F 15.099+0.016 108
the two-particle Schidinger-like equation in the limit of —5.7279+0.0041 15.0892 0.0027 64
small pair separation when a modern He-He interaction pog —5.7246+0.0078 15.108% 0.0072 108
tential is used. u —5.7216-0.0075 15.1209 0.0073 256

In this work we have considered the analytical correlation HED-B3-FC11

factor obtained by finding the approximate two-particle —5.848+0.009 15.102 0.006 108
Schralinger’s like equation in the limit of small pair separa- up — 58512+ 0.0079 15.108% 0.0072 108
tions for the HFD-B3-FCI1 potential. To take into account _5.8480+0.0076 15.1209 0.0073 256

the effect of the remaining particles in the system, the poten-
tial amplitude and distances are rescaled by the variation@Reference 13.

parameters4d and S, respectively. The pseudopotential ob-

tained in this way is given by C. The solid phase

The traditional approach to construct a solid phase wave
(3.70  function introduces a mean field term that localizes the par-
ticles around given lattice positioms In the Nosanow form,
we use a product of Gaussian one-body factors

EAefar/S

r 1
—+ .
aS  o?

m
ue(r):A<P

B. Explicit three-body terms

2
Accurate trial wave functions for the investigation of ¢(R):H e (A=Y, (319
quantum liquids usually include three-body correlations. In
Monte Carlo calculations a very useful form of such corre-
lations is given by IV. RESULTS
A. The liquid phase

hijkzexp< - %2 EiEitiiTik | (3.9 A good trial wave function must be continuous and it is
cycl convenient to have at least the first derivative continuous as
well. Usually the pseudopotentials are slightly modified near
the edge of the simulation cell to avoid discontinuities. It
also is possible to include long range pseudopotentials and
compute their contribution using lattice sum techniques such
as the Ewald method. We discuss only the cases were the
correlations go to one and at least the first derivative goes to
m zero at or before a pair separation corresponding to half the
so-osg [

where\ is a parameter ané(r) is chosen variationally, cf.
Schmidtet al?

In this work we have used two different functional forms
for & One has a slightly simpler Gaussian form=2) than
that used in Ref. 9

(3.9 simulation cell size. A possible way of implementing these
requirements is to make a polynomial fit to the pseudopoten-
tial near the edge of the simulation cell so that it goes
smoothly to zero. In Ref. 13 a third degree polynomial was
used to fulfill the continuity requirements. The result ob-

w

The other has an exponential form, i.s=1. The motiva-
tion for this form comes from a fixed-phdSargument that

implies tained in this way, with the pseudopotentig|, is displayed
/ in Table 1. An easier option to implement is given by the
u’(r) i bl i i impl is gi by th
&)= er ' (3.10  prescription
r
whereug(r) is the two-body pseudopotential of the exponen- u(r)—u(r)+u(rg— r)—2U<§B) : (4.1

tial form. This same form was used previously in Refs. 11,

12. In addition to the amplitude in Eq. (3.8), there is only  Here, rg/2 is the cutoff length where the pseudopotentials
one more variational parameter introduced in the tripletand their first derivative are to go smoothly to zero. As we
terms: the widthw in Eq. (3.9). We denote the Gaussian can see in Table I, for the number of particles we consider,
form of ¢ by (T), and use T,) for the exponential form. both ways of imposing the continuity conditions give the
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TABLE Il. Results for a pair-product wave functions obtained  TABLE Ill. Average total and kinetic energies obtained through
through the basis set method at the equilibrium dengitgn?® pair-product wave functions with pseudopotenti@® of different
=21.8. The first column displays how many elements are used ifiorms and for the HFD-B3-FCI1 potential, at the equilibrium den-
the basis set. The average total engi§y/N and the kinetic energy sity. The PP used were of the McMillan and of the exponential
(T)/N per particle are given in Kelvin. The last column gives the form, first and second rows respectively, and one built using the
healing distance explicitly or d$2 when it is equal to half of the basis set method, third row. The total number of particles used was
simulation cell. The value 0.72 nm corresponds to about half thel08. The correlations range was half of the simulation cell.
size of the simulation cell of 64 bodies system.

PP (E)IN (K) (TYIN (K)
Range
Ue —6.0390+0.0092 14.9006 0.0047
HFDHE2 BS —6.097+0.011 14.667% 0.0059
7 —5.978£0.011 —14.7950t 0.0064 64 1/2
7 —5.983£0.019 14.8050.015 108 0.72
6 —5.9580+0.0086 14.57720.0046 64 112 per particle decreases by about 0.15 K. That is to say, a
5 —5.791+0.012 14.14610.0060 64  1/2 decrease practically equal to the deepening of the new po-
HFD-B3-FCI1 tential. This might be seen as a further indication that the
8 —6.176+0.023 14.84520.0094 108  0.72 major contribution to the binding energy of the helium atoms
7 —6.124+0.025 14.70%0.015 108 0.72 comes from two-body interactions, and the dimer properties
7 —6.135+0.032 14.526:0.017 108 /2 are reflected onto the whole system. The variational principle
6 —6.139-0.024 14.5690.011 64 172 requires the total energy to be a minimum. However, at the
6 —6.097+0.011 14.667%0.0059 108 0.72 accuracy level with which we perform our calculations, we
5 —6.095+0.034 14.302-0.021 64 I/2 can see that the kinetic energy depends on the value of the
5 —6.038+0.012 14.316+0.0098 108 0.72 healing distance. Looking at results obtained using a basis

set of seven elements for the HFD-B3-FCI1 potential we can
see that by increasing the healing distance, the kinetic energy
same result. Due to its computational convenience, from nowlecreases. This change is probably also reflected in other
on, when dealing with pseudopotentials that need to b@roperties of the system as well. If we compare our results
modified to go to zero at the edge of the simulation cell, wewith the experimental value of the kinetic energy, displayed
will use only the condition of Eq(4.1) as a means of impos- in Table IV, the large healing distance gives the best result.
ing the continuity of the wave function and its first deriva- Since we are mainly interested in comparing the two poten-
tive. The total energy of the system is computed using théials using the variational principle we will not pursue this
kinetic energy estimator of the Pandharipande-Bethe form point here. As already mentioned, although this principle re-
quires a minimum for the total energy, it says nothing about
a2 | N Viz‘IfT(R) other properties. In particular, for a system of helium atoms
(Mpe=— ’m 21 \P—(R) . (42 the binding energy is the result of a delicate balance between
. T kinetic and potential energy with large offsetting changes.
The reported kinetic energy is obtained through an estimatoXote that for a given number of basis elements, different

of the Jackson-Feenberg form evaluations of the total energy are in excellent agreement
within statistical uncertainties.
72 | N VAUL(R) (VW (R)\? In Table Ill we compare wave functions of the Jastrow
(Thar=— am ;1 V(R _( V(R ) - (43 form obtained using different pseudopotentials. The results

show how important it is to consider a pseudopotential that

As is well known the latter gives individually the lowest satisfies a Schobnger-like equation at small pair separa-
variance, while the total energy has a lower variance whetions, Eq.(3.7). The pseudopotential of the exponential form
the Pandharipande-Bethe form is used. Note that the randois able to recover about 75% of the additional binding energy
walk used to estimate the system properties can be the sambétained when we go from a pseudopotential of the Mc-
if the only change is the two-body interacting potential. InMillan form to one built using the basis set method.
our results this is done in those cases where we have equal Results obtained with explicit three-body terms are pre-
values for the kinetic energy for both interacting potentials.sented in Table IV. Examining the results for the HFDHE2
Also, according to the results of Table I, at least for thepotential, we see that a basis set of 6 elements is large
energy, finite size effects are not noticeable at the accuraocgnough to give all the binding energy obtained with a wave
level and for the number of particles used in our calculationsfunction with optimal two-body correlation factor and ex-

Before we compare results obtained with pseudopotentialplicit triplet term® This is the same number of elements used
of different forms in trial functions of pair-product form, let in the simple pair-wise trial function, cf. Table Il. For the
us discuss some results obtained only through the basis se@FD-B3-FCI1 potential this continues to be true. With this
method® From Table Il we can see that at the equilibrium last potential, we have used two different forms of the func-
density, a basis set with six elements is enough to recover th#n ¢ in the triplet factors. The possibility that an exponen-
energy due to two-body correlations for either one of thetial form gives a better result does not materialize. In fact,
potentials HFDHE2 or HFD-B3-FCI1. Roughly speaking, asthe result in somewhat worse. An unexpected result is that
we change to the HFD-B3-FCI1 potential, the total energythe triplet term is able to compensate for some of the defi-
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TABLE IV. Average total energyE)/N and the kinetic energy 0.26 K for the HFDHE2 potential and about 0.29 K for the
(T)/N per particle at the given healing distance, displayed in theHFD-B3-FCI1 potential. These values agrees within their
last column, at the equilibrium density. Results obtained for variastatistical errors. Our GEMC calculation gives an energy that
tional functions(VF) of the Jastrow J) with explicit three-body s below the experimental value. On the other hand, the ki-
terms for the given two-body pseudopotentials and triplets funcnetic energy as now calculated and the experimental data are
tional form (T stands for a form dependent on a Gaussian&@h iy excellent agreement. This suggests that three-body poten-
an exponential Except for the GFMF results with the HFDHE?2 tial effects may account for the energy difference.

potential, obtained with 64 bodies, all runs were made with 108 In Table V we present the variational parameters for

particles. many of the trial functions used to obtain the results we have
Range discussed._ In this same table, we E_;llso display the parameters
VE (EYIN (K) (TYIN (K) () of the variational functions used in the study of the solid
phase.

HFDHE2
JpsioT —6.8620.016' 14.868+0.052 /2 B. The crystalline phase
Jess T —6.8594+0.0084 14.0336:0.00862 0.72 i . . .
GEMC 7120+ 0.024 14.47+ 0.0 We have investigated solidHe at the densityp

HED-B3-ECI1 =32.9lnm‘3 using the HFD-B3-FCI1 two-body interaction

3,.T. 6.979-0.011 14.484-0.015 12 potential. We have started our studies with a trial function of
JossT 6.0983-00049 14200700064 072 € Jastrow-Nosanow form
Jes T —6.9766-0.0079 14.150%0.0085 1/2
JyeT —7.0000-0.0054  14.218%0.0078 112 ¥R =Wy(R)(R)=]] f(rij).H e (CR(r=1)?
GFMC —7.292+0.003 14.036:0.021 1/2 i<j i

Experiment 4.9

d
—rt 14.0:03 a product of Eq(3.2) and Eq.(3.1]). In Table VI we present

aReference 8. results obtained with this trial function. Loosely speaking,
bReference 2. the new interacting potentigHFD-B3-FCI1) is responsible
‘Reference 21. for a decrease of 0.20 K in the binding energy. Again, it is
dReference 22. remarkable that an analytical two-body correlation factor,
®Reference 23, average of results at temperature of 1.3 K. with the proper behavior at small distances E17), is able

to decrease the binding energy by 0.3 K in comparison to the

ciencies of the pseudopotential of the exponential form an@éne with a pseudopotential of the McMillan form.
produces the same energy obtained with a wave function that Before turning our attention to results obtained using trial
employs the basis set method. Recall that for a pair-wiséunctions with explicit triplet terms in the solid phase, we
wave function, cf. Table IlI, the basis set method give resultsonsider the basis set method results. It will be interesting to
significantly better than those obtained with a pseudopotersee how the size of the basis in this method changes with
tial of the exponential form. density. In Table VII we present results for crystallitiée at

We present GFMC results also in Table V. The differ- p=232.9 nnm3 obtained with basis of sizes ranging from 6 to
ence in energy between the variational and these results I elements. As we might expect, more than the six elements

TABLE V. Parameters for the given variational functiofd) and the HDF-B3-FCI1 interacting poten-
tial at the equilibrium density and at a crystallifiée phase. In almost all runs the healing distance was half
of the simulation cell. Only in the liquid phase, when the basis set method was used, it was equal to 0.72 nm.
Note that for thelgT andJg TN trial functions the parameter values occupy more than one row. To avoid
round off errors in some cases we display extra digits. The units of the parameters are the folloarayg:
C are given in nm?, w in nm.

VF Variational parameters

Liquid phasep=21.8 nm3

Jue A=0.0075 S§=1.40
Joss c,=0.096  c;=—0.0028 c,=0.0095 cs=—0.0096  c4=—0.0040
JasT c,=0.092  c3=-0.0055  c,=0.0088 c5-—0.0057 c=0.0022
A=-857.0 w=0.179
JueT A=0.0070 S=1.40 A= —689.0 w=0.184
Solid phasgp=32.9 nm’3
JueN A=0.0185 S§=1.16 C=138.0
JuelN A=0.0165 S§=1.19 A=-735.0 w=0.166 C=1255
JpsTN ¢,=0.040 c3=0.012 c,=—0.012 c5=0.0072

c¢=0.0045 c;=0.0026 Ccg= —0.0022 Co=0.0012
A=-918.0 w=0.166 C=109.0
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TABLE VI. Results for solid*He atp=232.9 nm 2 using a pair- TABLE VIIl. Results for crystal *He at p=32.9nm?3. The
wise trial functions with the given pseudopotentials and localizingvariational functions include a factor of the Jastrow form, explicit
factors of the Nosanow formN). The result for both interacting three-body terms and one-body terms of the Nosanow form. The

potentials were obtained using a 108 bodies. number of particles used in the calculations were 108.
VF (E)IN (K) (TY/N (K) VF (E)IN (K) (T)IN (K)
HFDHE2 HFDHE2

JumN —3.322+0.019 JumTN —3.786+0.014

HFD-B3-FCI1 JesioTN —4.011+0.03¢
JumN —3.522+0.019 31.05%0.016 HFD-B3-FCI1
JueN —3.840+0.012 30.634:0.012 JueTN —4.2345+-0.0082 31.20%0.019

JeoTN —4.2608+0.0062 31.4406 0.0097
*Reference 13. Experiment
—4.26 34.0(+0.9¢

used at the equilibrium density, cf. Table II, are needed. In

fact, with the density increase the form of the two-body cor-4Reference 24.

relation factor becomes more critical and we eventually neetiReference 8.

a basis with at least nine elements to obtain an optimal two inear interpolation from data of Ref. 25.

body correlation factor. dinear interpolation from data at 1.70 K of Ref. 26. The error is
The best variational results obtained for tfée crystal  from the published data and is displayed only as an indication.

phase are displayed in Table VIII. They are obtained with

variational wave functions that include a two-body correla-creases. The increase in the basis size in the basis set method

tion factor, explicit triplet terms and a Nosanow factor. It is to get the best functional form of the two-body correlation

striking that the new interacting potential used together withfactor as the density increases is also evidence that the varia-

the basis set method produces a variational energy that tfonal function gets relatively worse. On the other hand, if

equal to the experimental value within statistical uncertainwe accept that at high densities the three-body contribution

ties. At these densities the triplet term is no longer able tqg the potential energy is important, our GFMC calculations

compensate for imperfections in the two-body pseudopotenshow that these interactions are important as well at the equi-

tial of the exponential form as happened in the lower densityiprium density. As already mentioned, our GFMC calcula-

liquid phase, cf. Table IV. tion, performed with the HFD-B3-FCI1 potential, gives a
total energy below the experimental value by about 2%.
V. CONCLUSIONS The importance of nonadditive contributions in systems

o o ~of helium atoms has been a concern in the literature for a
Considering our results for both the liquid and the solid|ong time. In fact, at very high pressures, they are needed for
phases, we conclude that a more complete description of the good description of this systeth!® Although many
He-He interaction most probably requires a three-body intergffort21617 concentrated in considering only the long range
action. At the equilibrium density our best variational resultysip|e_dipole Axilrod-Teller interaction, exchange effects in
disagrees with the experimental binding energy by about 2%ne electronic clouds of two atoms in the presence of a third
while our solid at a density about 148ing is in excellent  gne has also been take into account by the so called Bruch-
agreement. Since it is likely that the variational wave func-pjcGee potential® However, there is a great deal of uncer-
tion gives a worse description of the ground state at highefainty in the parameters values of these potentials and even
densities, we believe the results simply show that three-body, iheir functional formt®1°We know that corrections due to
interactions become more important as the density increasegteractions of the Axilrod-Teller form are not very sensitive
If they give a positive co'ntrlbutlon to t.he energy and areyg the exact form of the two-body interacting potential and
neglected, we are left with the false impression that OUknhat they increase the energy, at the equilibrium density by
variational description is getting better as the density in-5pout 294216 This could bring our GFMC result in agree-
o o _ . ment with experiment at this density if we discard the ex-
TABLE VII. Variational and kinetic energies per particle for cnange effects. However, due to their attractive character and
solid "He atp=32.9nm . Resulted obtained using the basis set o gize these exchange effects can cancel the triple-

T et o et I e b EXPckipole energy a1 shortfange. n iher worcs: a good repre-
culations were performed using 108 particles and de HFD-BS-FCIfentatlon of the many-body components of the interaction

) potential for a system of helium atoms remains an outstand-
potential.

ing problem.
VE (E)IN (K) (TYIN (K) A sjgnificant improve_ment in the description of systems

of helium atoms that interact through a potential of the
Jgss TN —4.17%0.016 31.8050.019 Hartree-Fock dispersion form is obtained by using varia-
Jgsr TN —4.209+0.014 31.62%0.022 tional wave functions with two-body correlation factors hav-
Jgss TN —4.243+0.016 31.516:0.024 ing a pseudopotential of the exponential form. Its functional
Jpss TN —4.2608+0.0062 31.44060.0097 form, Eq.(3.7), is simple and it is advantageous to use it not
JasioTN —4.256+0.010 31.412-0.010 only when the HFD-B3-FCI1 potential is used, but also for

any potential of the Hartree-Fock dispersion form. The varia-
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tional parameter search is easily done and does not requikérial coefficients and transport properti2€On the other

any special attention. hand, there are already path integral Monte Carlo redults
Despite the excellent results obtained with the pseudopcfor the two-dimensionafHe system obtained with the HFD-

tential of the exponential form, it also has limitations. For B3-FCI1 potential. As is well knowh this method does not

such a functional form, fixed-phase arguments would predic§epend on trial functions and so it is easier to move to a new
a triplet term dependent on a functignEg. (3.8), of expo- interacting potential.

nential rather than of Gaussian form. Our results at best say One of the reasons why variational calculations move

that both the exponential and the Gaussian forms are equivenore slowly to new interacting potentials might be because
lent. We interpret this fact as an indication that at intermedi-new optimizations are need. We hope that this work present_
ate distances important features are still missing in ouing optimum variational parameters for many useful trial
pseudopotential of the exponential form. functions, both at the equilibrium density and for a solid at
The HFDHEZ2 potential has served for years as an excell—wl_lgpmeIt might overcome this inertia.
lent “effective” pair potential. Due to the well depth of this ~ The variational calculations of this paper show that three-
potential, its exclusive pair-wise treatment of the helium at-hody interactions must be considered in the He-He potential,
oms in the condensed phase has allowed the prediction @fnce we do not hope to have an exact variational wave func-
many properties in very good agreement with experifiént.  tion for our system ofHe atoms in the solid phase. We hope
more recent quantum Monte Carlo investigatibof this sys-  this situation will encourage new efforts in understanding the

tem using the HFD-BHE) interacting potential proposed by nonaddictive contributions to the potential energy for bulk
the Aziz group in 1987Ref. 4) also points in the direction helium systems.

that many-body effects might be of importance. However, as
before the inclusion of three-body contributions to the total
energy produces a worse equation of state.

In the past, the very good theoretical results obtained with
the HFDHEZ2 potential have inhibited the adoption of its re- This work was supported in part by the “Conselho Na-
vised versions. Now, however, this situation seems in needional de Desenvolvimento Cigfibo e Tecnolgico” and
of a change. It has been suggested that the HFD-B3-FCI1Financiadora de Estudos e Projetos.” It was conducted, in
interatomic potential has reached an accuracy where it can lggart, using the facilities of the “Centro Nacional de Proces-
used to calibrate the experimental apparatus used to measwg@mento de Alto Desempenho emoJaulo.”
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