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The two-body potential HFD-B3-FCI1 for He-He interactions proposed by Aziz and collaborators is ana-
lyzed using the variational Monte Carlo method. Complementary work using the Green’s function Monte Carlo
method is presented as well. The importance of three-body effects in the description of the interactions are
considered and good evidence is presented for using a potential that takes into account these effects even at the
equilibrium density of systems of4He atoms. An examination of the most usual trial functions forms employed
in the studies of these systems, some experiments with other correlation factors, and some methodological
notes complete this investigation.@S0163-1829~99!02741-1#
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I. INTRODUCTION

Until the beginning of the 1980s the most popular pote
tial used to investigate the properties of4He systems was the
Lennard-Jones potential. From that time on, theoretical s
ies have often used a potential of the Hartree-Fock disper
form, the HFDHE2 potential of Aziz and collaborators.1 To-
day this is one of the most used potentials. Its widely acc
tance was due in part to Green’s function Monte Ca
~GFMC! results2 that has shown how useful it was in com
puting properties in the condensed phase of the helium
tems. Small inconsistencies with theoretical results and
perimental data were detected sometime ago. Quan
Monte Carlo calculations3 of the Born-Oppenheimer interac
tion energy have shown that the potential barrier was
high. It was also shown to be deficient in low temperatu
predictions of the second virial coefficients and the transp
properties at high temperatures. In fact these properties
determined primarily by the overestimated repulsive wall

This situation prompted revisions of the HFDHE2 pote
tial. Since an early attempt4 to address these difficulties
many improvements have been made by the Aziz group
self, for a review see Ref. 5. The series of revisions has le
the so-called HFD-B3-FCI1 potential.6

It is our intent in this paper to discuss the HFD-B3-FC
potential in relation to variational Monte Carlo calculatio
for systems of4He atoms. For completeness, and compa
son, we give some GFMC results. The GFMC method fo
boson system gives the correct ground-state energy su
only to statistical uncertainties and on the assumed inter
ing potential. This raw data, in the sense that it reveals all
properties and difficulties of this many-body system, allo
one in principle to assess the accuracy of the employed
tential. However, our focus here is on developing good t
wave functions for variational Monte Carlo calculation
These functions, in turn allow us to systematically impro
and understand the physical correlations produced by the
teraction potential. Another of our aims is to see the imp
tance of the many-body forces involved. Since our results
model dependent, they might help us better understand
PRB 600163-1829/99/60~17!/12342~7!/$15.00
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role of three-body and possible higher interactions. We h
gone beyond simple energy minimizations, and have stud
the implementation of boundary conditions, analyzed
some details the basis set method for constructing two-b
correlations factors and introduced an analytical form for
pseudopotential in these factors. In the triplet term, toget
with this analytical form, due to fixed-phase arguments
have considered a functional form that relies on an expon
tial form rather than the usual Gaussian. For the system
equilibrium and for a solid at a density about 20% high
than the melting one, we give variational parameters
many of the trial functions we have used. We believe t
such technical knowledge will prompt the adoption of t
HFD-B3-FCI1 potential in future work. If optimal trial func
tions are needed for variational and GFMC calculations
other densities, our parameters can be interpolated and
as an initial values for the minimization procedure that w
then become easier and faster.

In the next section we give a very simple overview of t
HFD-B3-FCI1 interacting potential. In Sec. III we describ
the trial functions used in this paper, along with a brief d
cussion of the basis set method of optimization of two-bo
correlations factors. We present the functional forms use
the triplet term and the motivation to use an exponen
form for this term. In addition, an analytical form for th
two-body pseudopotential is introduced. Section IV prese
results of our calculations using the HFD-B3-FCI1 potent
along with values of the variational parameters. To ma
comparisons, both in liquid and solid phases, we inclu
results from the literature for the HFDHE2 potential as we
In the last section we discuss our results and draw so
conclusions.

II. THE HFD-B3-FCI1 INTERACTING POTENTIAL

In most studies, the helium systems are assumed to
described by the Hamiltonian

H5
2\2

2m (
i 51

N

¹ i
21(

i , j
V~r i j !, ~2.1!
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where explicit three-body interactions are neglected. T
model potentialV we want to investigate, the HFD-B3-FCI
potential, is based on the representation

Eint5DEscf1DEcorr, ~2.2!

where the interaction energy of a dimer is decomposed
self-consistent field or Hartree-Fock part and in a correlat
energy for the interaction. This last part is given by

DEcorr5eF~r !(
j 50

2
C2 j 16

r 2 j 16 ~2.3!

with

F~r !5H expF2S Dr m

r
21D 2G if r<Dr m ,

1, otherwise.

~2.4!

The Hartree-Fock repulsion is represented by fittingab
initio calculations to

DEscf5eA exp~2ar 2ubur 2!. ~2.5!

In the HFDHE2 modern potential only the linear term inr
was present in the exponential. In subsequent versions o
He-He potential, a term dependent on a parameterb was
introduced to assure more flexibility in the fit.

The HFD-B3-FCI1 potential uses the overall damp
Hartree-Fock dispersion form~HFD-B! and mimics very pre-
cise full configuration-interaction~FCI! calculations at inter-
mediate separations. Retardation effects in this potential
be neglected at the accuracy level we perform our stud
The position of the energy minimum isr m50.29683 nm with
a well depth ofe/kB 510.956 K. For comparison the value
for the HFDHE2 potential arer m50.29673 nm, ande/kB
510.80 K. Since the new potential is slightly deeper and
a large value forr m , the well is shifted outwards by a
small amount, s~HFD-B3-FCI1!50.26413813 nm while
s~HFDHE2!50.2639 nm.

III. VARIATIONAL WAVE FUNCTIONS

Trial functions used to investigate quantum liquids a
solids can be written in the general Feenberg7 form as

cT~R!5)
i , j

f i j )
i , j ,k

hi jk¯f~R!. ~3.1!

In this form, a wave function is written in terms of explic
n-body correlations factors, wheren goes up to the numbe
of particles in the system. In this work we consider two-bo
f and three-bodyh factors only. For the liquid state, w
assume a model statef[1, where all particles are in a un
form condensate. For the solid phase, the model statef is the
traditional mean field factor, a product of one-body Gauss
terms, that localizes the particles around a given lattice.

A. The pair-product wave function

The simplest wave function that we consider is of t
Jastrow form
e

a
n

he

an
s.

s

y

n

CJ~R!5)
i , j

f ~r i j !. ~3.2!

It explicitly correlates only pairs of particles through the fa
tor f (r )5e2 (1/2) u(r ).

A simple form for the correlation factor was introduce
by McMillan through a pseudopotentialuM(r ) of the form

uM~r !5
1

2 S b

r D 5

. ~3.3!

This pseudopotentialuM depends on a single variational p
rameterb.

For a Lennard-Jones 6–12 two-body potential,f M(r )
5e2 (1/2) uM(r ) is an approximate solution of the two-partic
Schrödinger-like equation

2\2

m
¹2f ~r !1@V~r !2l# f ~r !50, ~3.4!

in the limit of small pair separation. The energy eigenvalue
discarded and only the dominant termr 212 is satisfied. Some
of the effect of the remaining particles is taken into acco
in a variational calculation by tuning the parameterb of Eq.
~3.3!. As reported in Ref. 27, the zero-energy numerical
lution of Eq. ~3.4! is able to produce a radial distributio
function g(r ) on par with a slightly generalized McMillan
pseudopotential. The variational energy obtained with t
pseudopotential was not reported.

The basis set method for quantum liquids and solid8

subsequently also called as the Euler Monte Carlo metho
the literature, allows more freedom in simulation studies
these systems. The constraint of working with a fixed fun
tional form of the pseudopotential was eliminated by defi
ing

f ~r !5 (
n51

p

cnf n~r !, ~3.5!

where thef n(r ) are the spherically symmetric eigenfunctio
solutions of the two-particle Schro¨dinger-like equation~3.4!,
and thecn variational parameters. Of course, any suita
basis could be used as well. Originally the solutionsf n were
required to go smoothly to zero and to have a continu
derivative at a healing distanced. This distance can be
treated as a variational parameter or eventually made e
to half the side of the simulation cell. Since we also requ
f (r ) of Eq. ~3.5! to satisfy the continuity conditions, we hav
constrained thecn to satisfy

15 (
n51

p

cn . ~3.6!

This implies that for a basis set withp11 elements
(BSp11), due to the constraint of Eq.~3.6!, the number of
free variational parameters for the two-body correlation f
tor is only p. In other words, the number of elements in t
basis is greater than the number of variational parame
by 1.

There are some advantages in using the basis set me
having as basis elements solutions of the two-part
Schrödinger-like equation. In addition to having a physic
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12 344 PRB 60S. A. VITIELLO AND K. E. SCHMIDT
motivation, in the limit of small pair separations, the resu
ing Jastrow functionf of Eq. ~3.5! is automatically a solution
of the two-body Schro¨dinger-like equation.

Despite the well known importance of having the corre
functional form for the two-body correlation factor at sma
pair separation, this fact is largely neglected in the literat
when He-He modern interaction potentials are used. Perh
because of its very simple form, and because it contains
basic physical requirements, namely a strong suppressio
any overlap between any pair of particles and which g
smoothly to an uncorrelated pair of as the separation dista
increases, often a pseudopotential of the McMillan form c
tinues to be used. However, it is not hard to use the basis
method or to find an analytical pseudopotential that satis
the two-particle Schro¨dinger-like equation in the limit of
small pair separation when a modern He-He interaction
tential is used.

In this work we have considered the analytical correlat
factor obtained by finding the approximate two-partic
Schrödinger’s like equation in the limit of small pair separ
tions for the HFD-B3-FCI1 potential. To take into accou
the effect of the remaining particles in the system, the pot
tial amplitude and distances are rescaled by the variatio
parametersA and S, respectively. The pseudopotential o
tained in this way is given by

ue~r !5AS m

\2D eAe2ar /SS r

aS 1
1

a2D . ~3.7!

B. Explicit three-body terms

Accurate trial wave functions for the investigation
quantum liquids usually include three-body correlations.
Monte Carlo calculations a very useful form of such cor
lations is given by

hi jk5expS 2
l

2 (
cycl

j i j j jkr i j •r jkD , ~3.8!

wherel is a parameter andj(r ) is chosen variationally, cf
Schmidtet al.9

In this work we have used two different functional form
for j. One has a slightly simpler Gaussian form (m52) than
that used in Ref. 9

j~r !5expF2S r

wD mG . ~3.9!

The other has an exponential form, i.e.,m51. The motiva-
tion for this form comes from a fixed-phase10 argument that
implies

j~r !5
ue8~r !

r
, ~3.10!

whereue(r ) is the two-body pseudopotential of the expone
tial form. This same form was used previously in Refs. 1
12. In addition to the amplitudel in Eq. ~3.8!, there is only
one more variational parameter introduced in the trip
terms: the widthw in Eq. ~3.9!. We denote the Gaussia
form of j by (T), and use (Te) for the exponential form.
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C. The solid phase

The traditional approach to construct a solid phase w
function introduces a mean field term that localizes the p
ticles around given lattice positionsl i . In the Nosanow form,
we use a product of Gaussian one-body factors

f~R!5)
i

e2 ~C/2!(r i2 li )
2
. ~3.11!

IV. RESULTS

A. The liquid phase

A good trial wave function must be continuous and it
convenient to have at least the first derivative continuous
well. Usually the pseudopotentials are slightly modified ne
the edge of the simulation cell to avoid discontinuities.
also is possible to include long range pseudopotentials
compute their contribution using lattice sum techniques s
as the Ewald method. We discuss only the cases were
correlations go to one and at least the first derivative goe
zero at or before a pair separation corresponding to half
simulation cell size. A possible way of implementing the
requirements is to make a polynomial fit to the pseudopot
tial near the edge of the simulation cell so that it go
smoothly to zero. In Ref. 13 a third degree polynomial w
used to fulfill the continuity requirements. The result o
tained in this way, with the pseudopotentialup , is displayed
in Table I. An easier option to implement is given by th
prescription

u~r !→u~r !1u~r B2r !22uS r B

2 D . ~4.1!

Here, r B/2 is the cutoff length where the pseudopotenti
and their first derivative are to go smoothly to zero. As w
can see in Table I, for the number of particles we consid
both ways of imposing the continuity conditions give th

TABLE I. Comparison between two different ways of imposin
the continuity of a pair-wise trial function and its first derivativ
Results for the average total energy^E&/N and for the kinetic en-
ergy ^T&/N per particle at the given number of particlesN obtained
at the equilibrium density and the given potentials. In the rows w
the symbolup we have imposed the boundary conditions by a po
nomial fit in the pseudopotential~PP! of the McMillan form, while
in the rows with the symbolu we make a reflection of this PP at th
edge of the simulation cell@see Eq.~4.1!#. In all cases the varia-
tional parameterb is equal to 0.307 nm.

PP ^E&/N ~K! ^T&/N ~K! N

HFDHE2
up 25.71760.021a 15.09960.016 108
u 25.727960.0041 15.089260.0027 64
u 25.724660.0078 15.108160.0072 108
u 25.721660.0075 15.120960.0073 256

HFD-B3-FC11
up 25.84860.009 15.10260.006 108
u 25.851260.0079 15.108160.0072 108
u 25.848060.0076 15.120960.0073 256

aReference 13.
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PRB 60 12 345VARIATIONAL METHODS FOR 4He USING A MODERN . . .
same result. Due to its computational convenience, from n
on, when dealing with pseudopotentials that need to
modified to go to zero at the edge of the simulation cell,
will use only the condition of Eq.~4.1! as a means of impos
ing the continuity of the wave function and its first deriv
tive. The total energy of the system is computed using
kinetic energy estimator of the Pandharipande-Bethe for

^T&PB52
\2

2m K (
i 51

N
¹ i

2CT~R!

CT~R! L . ~4.2!

The reported kinetic energy is obtained through an estim
of the Jackson-Feenberg form

^T&JF52
\2

4m K (
i 51

N
¹ i

2CT~R!

CT~R!
2S ¹CT~R!

CT~R! D 2L . ~4.3!

As is well known the latter gives individually the lowe
variance, while the total energy has a lower variance w
the Pandharipande-Bethe form is used. Note that the ran
walk used to estimate the system properties can be the s
if the only change is the two-body interacting potential.
our results this is done in those cases where we have e
values for the kinetic energy for both interacting potentia
Also, according to the results of Table I, at least for t
energy, finite size effects are not noticeable at the accu
level and for the number of particles used in our calculatio

Before we compare results obtained with pseudopoten
of different forms in trial functions of pair-product form, le
us discuss some results obtained only through the basi
method.8 From Table II we can see that at the equilibriu
density, a basis set with six elements is enough to recove
energy due to two-body correlations for either one of
potentials HFDHE2 or HFD-B3-FCI1. Roughly speaking,
we change to the HFD-B3-FCI1 potential, the total ene

TABLE II. Results for a pair-product wave functions obtaine
through the basis set method at the equilibrium density,r nm3

521.8. The first column displays how many elements are use
the basis set. The average total energy^E&/N and the kinetic energy
^T&/N per particle are given in Kelvin. The last column gives t
healing distance explicitly or asl /2 when it is equal to half of the
simulation cell. The value 0.72 nm corresponds to about half
size of the simulation cell of 64 bodies system.

BS ^E&/N ~K! ^T&/N ~K! N
Range
~nm!

HFDHE2
7 25.97860.011 214.795060.0064 64 l /2
7 25.98360.019 14.80560.015 108 0.72
6 25.958060.0086 14.577260.0046 64 l /2
5 25.79160.012 14.146160.0060 64 l /2

HFD-B3-FCI1
8 26.17660.023 14.845760.0094 108 0.72
7 26.12460.025 14.70560.015 108 0.72
7 26.13560.032 14.52060.017 108 l /2
6 26.13960.024 14.56960.011 64 l /2
6 26.09760.011 14.667560.0059 108 0.72
5 26.09560.034 14.30260.021 64 l /2
5 26.03860.012 14.316160.0098 108 0.72
w
e

e

e

or

n
m

me

ual
.

cy
s.
ls

set

he
e
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per particle decreases by about 0.15 K. That is to say
decrease practically equal to the deepening of the new
tential. This might be seen as a further indication that
major contribution to the binding energy of the helium atom
comes from two-body interactions, and the dimer proper
are reflected onto the whole system. The variational princ
requires the total energy to be a minimum. However, at
accuracy level with which we perform our calculations, w
can see that the kinetic energy depends on the value of
healing distance. Looking at results obtained using a b
set of seven elements for the HFD-B3-FCI1 potential we c
see that by increasing the healing distance, the kinetic en
decreases. This change is probably also reflected in o
properties of the system as well. If we compare our res
with the experimental value of the kinetic energy, display
in Table IV, the large healing distance gives the best res
Since we are mainly interested in comparing the two pot
tials using the variational principle we will not pursue th
point here. As already mentioned, although this principle
quires a minimum for the total energy, it says nothing ab
other properties. In particular, for a system of helium ato
the binding energy is the result of a delicate balance betw
kinetic and potential energy with large offsetting chang
Note that for a given number of basis elements, differ
evaluations of the total energy are in excellent agreem
within statistical uncertainties.

In Table III we compare wave functions of the Jastro
form obtained using different pseudopotentials. The res
show how important it is to consider a pseudopotential t
satisfies a Schro¨dinger-like equation at small pair separ
tions, Eq.~3.7!. The pseudopotential of the exponential for
is able to recover about 75% of the additional binding ene
obtained when we go from a pseudopotential of the M
Millan form to one built using the basis set method.

Results obtained with explicit three-body terms are p
sented in Table IV. Examining the results for the HFDHE
potential, we see that a basis set of 6 elements is la
enough to give all the binding energy obtained with a wa
function with optimal two-body correlation factor and e
plicit triplet term.8 This is the same number of elements us
in the simple pair-wise trial function, cf. Table II. For th
HFD-B3-FCI1 potential this continues to be true. With th
last potential, we have used two different forms of the fun
tion j in the triplet factors. The possibility that an expone
tial form gives a better result does not materialize. In fa
the result in somewhat worse. An unexpected result is
the triplet term is able to compensate for some of the d

in

e

TABLE III. Average total and kinetic energies obtained throu
pair-product wave functions with pseudopotentials~PP! of different
forms and for the HFD-B3-FCI1 potential, at the equilibrium de
sity. The PP used were of the McMillan and of the exponen
form, first and second rows respectively, and one built using
basis set method, third row. The total number of particles used
108. The correlations range was half of the simulation cell.

PP ^E&/N ~K! ^T&/N ~K!

uM 25.851260.0079 15.108160.0072
ue 26.039060.0092 14.900660.0047
BS6 26.09760.011 14.667560.0059
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ciencies of the pseudopotential of the exponential form
produces the same energy obtained with a wave function
employs the basis set method. Recall that for a pair-w
wave function, cf. Table III, the basis set method give resu
significantly better than those obtained with a pseudopo
tial of the exponential form.

We present GFMC results also in Table IV. The diffe
ence in energy between the variational and these resul

TABLE IV. Average total energŷE&/N and the kinetic energy
^T&/N per particle at the given healing distance, displayed in
last column, at the equilibrium density. Results obtained for va
tional functions~VF! of the Jastrow (J) with explicit three-body
terms for the given two-body pseudopotentials and triplets fu
tional form (T stands for a form dependent on a Gaussian andTe on
an exponential!. Except for the GFMF results with the HFDHE
potential, obtained with 64 bodies, all runs were made with 1
particles.

VF ^E&/N ~K! ^T&/N ~K!
Range
~nm!

HFDHE2
JBS10T 26.86260.016a 14.86860.052 l /2
JBS6T 26.859460.0084 14.033060.00862 0.72
GFMC 27.12060.024b 14.4760.09c

HFD-B3-FCI1
JueTe 26.97960.011 214.48460.015 l /2
JBS6T 26.998360.0049 14.209760.0064 0.72
JBS7T 26.976660.0079 14.150560.0085 l /2
JueT 27.000060.0054 14.218560.0078 l /2
GFMC 27.29260.003 14.03060.021 l /2

Experiment
27.71d 14.060.3e

aReference 8.
bReference 2.
cReference 21.
dReference 22.
eReference 23, average of results at temperature of 1.3 K.
d
at
e
s
n-

is

0.26 K for the HFDHE2 potential and about 0.29 K for th
HFD-B3-FCI1 potential. These values agrees within th
statistical errors. Our GFMC calculation gives an energy t
is below the experimental value. On the other hand, the
netic energy as now calculated and the experimental data
in excellent agreement. This suggests that three-body po
tial effects may account for the energy difference.

In Table V we present the variational parameters
many of the trial functions used to obtain the results we h
discussed. In this same table, we also display the param
of the variational functions used in the study of the so
phase.

B. The crystalline phase

We have investigated solid4He at the densityr
532.9 nm23 using the HFD-B3-FCI1 two-body interactio
potential. We have started our studies with a trial function
the Jastrow-Nosanow form

CJN~R!5CJ~R!f~R!5)
i , j

f ~r i j !•)
i

e2 ~C/2!(r i2 li )
2
,

~4.4!

a product of Eq.~3.2! and Eq.~3.11!. In Table VI we present
results obtained with this trial function. Loosely speakin
the new interacting potential~HFD-B3-FCI1! is responsible
for a decrease of 0.20 K in the binding energy. Again, it
remarkable that an analytical two-body correlation fact
with the proper behavior at small distances Eq.~3.7!, is able
to decrease the binding energy by 0.3 K in comparison to
one with a pseudopotential of the McMillan form.

Before turning our attention to results obtained using tr
functions with explicit triplet terms in the solid phase, w
consider the basis set method results. It will be interesting
see how the size of the basis in this method changes
density. In Table VII we present results for crystalline4He at
r532.9 nm23 obtained with basis of sizes ranging from 6
10 elements. As we might expect, more than the six elem

e
-

-

8

-
half
.72 nm.
void
:

TABLE V. Parameters for the given variational functions~VF! and the HDF-B3-FCI1 interacting poten
tial at the equilibrium density and at a crystalline4He phase. In almost all runs the healing distance was
of the simulation cell. Only in the liquid phase, when the basis set method was used, it was equal to 0
Note that for theJBS6T andJBS9TN trial functions the parameter values occupy more than one row. To a
round off errors in some cases we display extra digits. The units of the parameters are the followingl and
C are given in nm22, w in nm.

VF Variational parameters

Liquid phaser521.8 nm23

Jue A50.0075 S51.40
JBS6 c250.096 c3520.0028 c450.0095 c5520.0096 c6520.0040
JBS6T c250.092 c3520.0055 c450.0088 c5520.0057 c650.0022

l52857.0 w50.179
JueT A50.0070 S51.40 l52689.0 w50.184

Solid phaser532.9 nm23

JueN A50.0185 S51.16 C5138.0
JueTN A50.0165 S51.19 l52735.0 w50.166 C5125.5
JBS9TN c250.040 c350.012 c4520.012 c550.0072

c650.0045 c750.0026 c8520.0022 c950.0012
l52918.0 w50.166 C5109.0
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used at the equilibrium density, cf. Table II, are needed
fact, with the density increase the form of the two-body c
relation factor becomes more critical and we eventually n
a basis with at least nine elements to obtain an optimal t
body correlation factor.

The best variational results obtained for the4He crystal
phase are displayed in Table VIII. They are obtained w
variational wave functions that include a two-body corre
tion factor, explicit triplet terms and a Nosanow factor. It
striking that the new interacting potential used together w
the basis set method produces a variational energy th
equal to the experimental value within statistical uncerta
ties. At these densities the triplet term is no longer able
compensate for imperfections in the two-body pseudopo
tial of the exponential form as happened in the lower den
liquid phase, cf. Table IV.

V. CONCLUSIONS

Considering our results for both the liquid and the so
phases, we conclude that a more complete description o
He-He interaction most probably requires a three-body in
action. At the equilibrium density our best variational res
disagrees with the experimental binding energy by about
while our solid at a density about 1.18rmelting is in excellent
agreement. Since it is likely that the variational wave fun
tion gives a worse description of the ground state at hig
densities, we believe the results simply show that three-b
interactions become more important as the density increa
If they give a positive contribution to the energy and a
neglected, we are left with the false impression that
variational description is getting better as the density

TABLE VI. Results for solid4He atr532.9 nm23 using a pair-
wise trial functions with the given pseudopotentials and localiz
factors of the Nosanow form (N). The result for both interacting
potentials were obtained using a 108 bodies.

VF ^E&/N ~K! ^T&/N ~K!

HFDHE2
JuMN 23.32260.019a

HFD-B3-FCI1
JuMN 23.52260.019 31.05160.016
JueN 23.84060.012 30.63460.012

aReference 13.

TABLE VII. Variational and kinetic energies per particle fo
solid 4He at r532.9 nm23. Resulted obtained using the basis s
method, with different numbers of elements in the basis, exp
three-body terms and localizing factors of the Nosanow form. C
culations were performed using 108 particles and de HFD-B3-F
potential.

VF ^E&/N ~K! ^T&/N ~K!

JBS6TN 24.17960.016 31.80560.019
JBS7TN 24.20960.014 31.62160.022
JBS8TN 24.24360.016 31.51660.024
JBS9TN 24.260860.0062 31.440660.0097
JBS10TN 24.25660.010 31.41260.010
n
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r
-

creases. The increase in the basis size in the basis set m
to get the best functional form of the two-body correlati
factor as the density increases is also evidence that the v
tional function gets relatively worse. On the other hand,
we accept that at high densities the three-body contribu
to the potential energy is important, our GFMC calculatio
show that these interactions are important as well at the e
librium density. As already mentioned, our GFMC calcu
tion, performed with the HFD-B3-FCI1 potential, gives
total energy below the experimental value by about 2%.

The importance of nonadditive contributions in syste
of helium atoms has been a concern in the literature fo
long time. In fact, at very high pressures, they are needed
a good description of this system.14,15 Although many
efforts2,16,17concentrated in considering only the long ran
triple-dipole Axilrod-Teller interaction, exchange effects
the electronic clouds of two atoms in the presence of a th
one has also been take into account by the so called Br
McGee potential.18 However, there is a great deal of unce
tainty in the parameters values of these potentials and e
in their functional form.15,19We know that corrections due t
interactions of the Axilrod-Teller form are not very sensitiv
to the exact form of the two-body interacting potential a
that they increase the energy, at the equilibrium density
about 2%.2,16 This could bring our GFMC result in agree
ment with experiment at this density if we discard the e
change effects. However, due to their attractive character
similar size, these exchange effects can cancel the tri
dipole energy at short range. In other words: a good rep
sentation of the many-body components of the interact
potential for a system of helium atoms remains an outsta
ing problem.

A significant improvement in the description of system
of helium atoms that interact through a potential of t
Hartree-Fock dispersion form is obtained by using var
tional wave functions with two-body correlation factors ha
ing a pseudopotential of the exponential form. Its function
form, Eq.~3.7!, is simple and it is advantageous to use it n
only when the HFD-B3-FCI1 potential is used, but also f
any potential of the Hartree-Fock dispersion form. The var

g

t
it
l-
I1

TABLE VIII. Results for crystal 4He at r532.9 nm23. The
variational functions include a factor of the Jastrow form, expli
three-body terms and one-body terms of the Nosanow form.
number of particles used in the calculations were 108.

VF ^E&/N ~K! ^T&/N ~K!

HFDHE2
JuMTN 23.78660.014a

JBS10TN 24.01160.036b

HFD-B3-FCI1
JueTN 24.234560.0082 31.20160.019
JBS9TN 24.260860.0062 31.440660.0097

Experiment
24.26c 34.0 ~60.9!d

aReference 24.
bReference 8.
cLinear interpolation from data of Ref. 25.
dLinear interpolation from data at 1.70 K of Ref. 26. The error
from the published data and is displayed only as an indication
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tional parameter search is easily done and does not req
any special attention.

Despite the excellent results obtained with the pseudo
tential of the exponential form, it also has limitations. F
such a functional form, fixed-phase arguments would pre
a triplet term dependent on a functionj, Eq. ~3.8!, of expo-
nential rather than of Gaussian form. Our results at best
that both the exponential and the Gaussian forms are equ
lent. We interpret this fact as an indication that at interme
ate distances important features are still missing in
pseudopotential of the exponential form.

The HFDHE2 potential has served for years as an ex
lent ‘‘effective’’ pair potential. Due to the well depth of thi
potential, its exclusive pair-wise treatment of the helium
oms in the condensed phase has allowed the predictio
many properties in very good agreement with experiment.2 A
more recent quantum Monte Carlo investigation19 of this sys-
tem using the HFD-B~HE! interacting potential proposed b
the Aziz group in 1987~Ref. 4! also points in the direction
that many-body effects might be of importance. However
before the inclusion of three-body contributions to the to
energy produces a worse equation of state.

In the past, the very good theoretical results obtained w
the HFDHE2 potential have inhibited the adoption of its
vised versions. Now, however, this situation seems in n
of a change. It has been suggested that the HFD-B3-F
interatomic potential has reached an accuracy where it ca
used to calibrate the experimental apparatus used to mea
T.
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virial coefficients and transport properties.6 On the other
hand, there are already path integral Monte Carlo resu20

for the two-dimensional4He system obtained with the HFD
B3-FCI1 potential. As is well known15 this method does no
depend on trial functions and so it is easier to move to a n
interacting potential.

One of the reasons why variational calculations mo
more slowly to new interacting potentials might be becau
new optimizations are need. We hope that this work pres
ing optimum variational parameters for many useful tr
functions, both at the equilibrium density and for a solid
r'1.18rmelt might overcome this inertia.

The variational calculations of this paper show that thr
body interactions must be considered in the He-He poten
since we do not hope to have an exact variational wave fu
tion for our system of4He atoms in the solid phase. We hop
this situation will encourage new efforts in understanding
nonaddictive contributions to the potential energy for bu
helium systems.
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