406 research outputs found

    Associations between e-cigarette access and smoking and drinking behaviours in teenagers

    Get PDF
    Background: Public health concerns regarding e-cigarettes and debate on appropriate regulatory responses are focusing on the need to prevent child access to these devices. However, little is currently known about the characteristics of those young people that are accessing e-cigarettes. Methods: Using a cross-sectional survey of 14-17 year old school students in North West England (n = 16,193) we examined associations between e-cigarette access and demographics, conventional smoking behaviours, alcohol consumption, and methods of accessing cigarettes and alcohol. Access to e-cigarettes was identified through a question asking students if they had ever tried or purchased e-cigarettes. Results: One in five participants reported having accessed e-cigarettes (19.2%). Prevalence was highest among\ud smokers (rising to 75.8% in those smoking >5 per day), although 15.8% of teenagers that had accessed e-cigarettes had never smoked conventional cigarettes (v.13.6% being ex-smokers). E-cigarette access was independently associated with male gender, having parents/guardians that smoke and students’ alcohol use. Compared with non-drinkers, teenagers that drank alcohol at least weekly and binge drank were more likely to have accessed e-cigarettes (adjusted odds ratio [AOR] 1.89, P < 0.001), with this association particularly strong among never-smokers (AOR 4.59, P < 0.001). Among drinkers, e-cigarette access was related to: drinking to get drunk, alcohol-related violence, consumption of spirits; self-purchase of alcohol from shops or supermarkets; and accessing alcohol by recruiting adult proxy purchasers outside shops. Conclusions: There is an urgent need for controls on the promotion and sale of e-cigarettes to children. Findings suggest that e-cigarettes are being accessed by teenagers more for experimentation than smoking cessation. Those most likely to access e-cigarettes may already be familiar with illicit methods of accessing age-restricted substances

    Breast cancer and childhood anthropometry: emerging hypotheses?

    Get PDF
    In this issue of Breast Cancer Research, Baer and colleagues report a strong protective effect of childhood and adolescent body fatness on premenopausal breast cancer risk based on a large prospective study. Methodological issues are discussed, as are tentative biological interpretations regarding the findings

    Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions

    Get PDF
    Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules — the SPUtNIk study

    Get PDF
    Introduction:\textbf{Introduction:} Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrastenhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis:\textbf{Methods and analysis:} The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18^{18}FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18^{18}FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination:\textbf{Ethics and dissemination:} Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals.The trial is funded by the National Institute for Health Research HTA Programme (grant no: 09/22/117) and is being run by Southampton Clinical Trials Unit, directed by Professor Gareth Griffiths and part funded by Cancer Research UK. NRQ and RCR are part funded by the Cambridge Biomedical Research Centre and the Cancer Research Network: Eastern

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    Get PDF
    © 2016 Griffith et al. The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators

    The ANTOP study: focal psychodynamic psychotherapy, cognitive-behavioural therapy, and treatment-as-usual in outpatients with anorexia nervosa - a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anorexia nervosa is a serious eating disorder leading to high morbidity and mortality as a result of both malnutrition and suicide. The seriousness of the disorder requires extensive knowledge of effective treatment options. However, evidence for treatment efficacy in this area is remarkably weak. A recent Cochrane review states that there is an urgent need for large, well-designed treatment studies for patients with anorexia nervosa. The aim of this particular multi-centre study is to evaluate the efficacy of two standardized outpatient treatments for patients with anorexia nervosa: focal psychodynamic (FPT) and cognitive behavioural therapy (CBT). Each therapeutic approach is compared to a "treatment-as-usual" control group.</p> <p>Methods/Design</p> <p>237 patients meeting eligibility criteria are randomly and evenly assigned to the three groups – two intervention groups (CBT and FPT) and one control group. The treatment period for each intervention group is 10 months, consisting of 40 sessions respectively. Body weight, eating disorder related symptoms, and variables of therapeutic alliance are measured during the course of treatment. Psychotherapy sessions are audiotaped for adherence monitoring. The treatment in the control group, both the dosage and type of therapy, is not regulated in the study protocol, but rather reflects the current practice of established outpatient care. The primary outcome measure is the body mass index (BMI) at the end of the treatment (10 months after randomization).</p> <p>Discussion</p> <p>The study design surmounts the disadvantages of previous studies in that it provides a randomized controlled design, a large sample size, adequate inclusion criteria, an adequate treatment protocol, and a clear separation of the treatment conditions in order to avoid contamination. Nevertheless, the study has to deal with difficulties specific to the psychopathology of anorexia nervosa. The treatment protocol allows for dealing with the typically occurring medical complications without dropping patients from the protocol. However, because patients are difficult to recruit and often ambivalent about treatment, a drop-out rate of 30% is assumed for sample size calculation. Due to the ethical problem of denying active treatment to patients with anorexia nervosa, the control group is defined as "treatment-as-usual".</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN72809357</p

    Role of Caveolae in Cardiac Protection

    Get PDF
    Myocardial ischemia/reperfusion injury is a major cause of morbidity and mortality. The molecular signaling pathways involved in cardiac protection from myocardial ischemia/reperfusion injury are complex. An emerging idea in signal transduction suggests the existence of spatially organized complexes of signaling molecules in lipid-rich microdomains of the plasma membrane known as caveolae. Caveolins—proteins abundant in caveolae—provide a scaffold to organize, traffic, and regulate signaling molecules. Numerous signaling molecules involved in cardiac protection are known to exist within caveolae or interact directly with caveolins. Over the last 4 years, our laboratories have explored the hypothesis that caveolae are vitally important to cardiac protection from myocardial ischemia/reperfusion injury. We have provided evidence that (1) caveolae and the caveolin isoforms 1 and 3 are essential for cardiac protection from myocardial ischemia/reperfusion injury, (2) stimuli that produce preconditioning of cardiac myocytes, including brief periods of ischemia/reperfusion and exposure to volatile anesthetics, alter the number of membrane caveolae, and (3) cardiac myocyte-specific overexpression of caveolin-3 can produce innate cardiac protection from myocardial ischemia/reperfusion injury. The work demonstrates that caveolae and caveolins are critical elements of signaling pathways involved in cardiac protection and suggests that caveolins are unique targets for therapy in patients at risk of myocardial ischemia
    corecore