300 research outputs found

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively

    Neutrophils infected with highly virulent influenza H3N2 virus exhibit augmented early cell death and rapid induction of type I interferon signaling pathways

    Get PDF
    AbstractWe developed a model of influenza virus infection of neutrophils by inducing differentiation of the MPRO promyelocytic cell line. After 5days of differentiation, about 20–30% of mature neutrophils could be detected. Only a fraction of neutrophils were infected by highly virulent influenza (HVI) virus, but were unable to support active viral replication compared with MDCK cells. HVI infection of neutrophils augmented early and late apoptosis as indicated by annexin V and TUNEL assays. Comparison between the global transcriptomic responses of neutrophils to HVI and low virulent influenza (LVI) revealed that the IFN regulatory factor and IFN signaling pathways were the most significantly overrepresented pathways, with activation of related genes in HVI as early as 3h. Relatively consistent results were obtained by real-time RT-PCR of selected genes associated with the type I IFN pathway. Early after HVI infection, comparatively enhanced expression of apoptosis-related genes was also elicited

    Decoherence in a Josephson junction qubit

    Full text link
    The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.Comment: 4 pages, 6 figure

    Experimental demonstration of intermodal dispersion in a two-core optical fiber

    No full text
    The recent prediction that intermodal dispersion can play a significant role in pulse evolution in a two-core optical fiber was confirmed experimentally. A picosecond pulse at 1.548µm launched into one core of a meters-long two-core fiber was found to come out of either core of the fiber as two temporally separate pulses. By measuring the time delay between these two pulses, the intermodal dispersion in the fiber was estimated to be 1.13ps/m, in good agreement with theory

    Excited ΛQ\Lambda_Q Baryons in the Large NcN_c Limit

    Full text link
    The spectrum of excited ΛQ\Lambda_Q-type heavy baryons is considered in the large NcN_c limit. The universal form factors for Λb\Lambda_b semileptonic decay to excited charmed baryons are calculated in the large NcN_c limit. We find that the Bjorken sum rule (for the slope of the Isgur--Wise function) and Voloshin sum rule (for the mass of the light degrees of freedom) are saturated by the first doublet of excited ΛQ\Lambda_Q states.Comment: 9 pages, use phyzzx, CALT-68-191

    Excited Heavy Baryons in the Bound State Picture

    Get PDF
    The orbitally excited heavy quark baryons are studied in the Callan Klebanov bound state model with heavy spin symmetry. First, a compact description of the large NcN_c, infinite heavy quark mass bound state wavefunctions and the collective quantization is given. In order to study the kinematical corrections due to finite masses we motivate an approximate Schrodinger-like equation for the bound state. The effective potential in this equation is compared with the quadratic approximation (spherical harmonic oscillator) to it. This oscillator approximation is seen to be not very accurate. It is noted that the present experimental information cannot be even qualitatively understood with the usual light sector chiral Lagrangian containing only light pseudoscalar mesons. The addition of light vector mesons helps to overcome this problem.Comment: LaTex, 23 pages, SU-4240-586/UCI-TR 94-3

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
    corecore