25 research outputs found

    Effects of dual task on turning ability in stroke survivors and older adults

    Get PDF
    Background: Turning is an integral component of independent mobility in which stroke survivors frequently fall. Objective: This study sought to measure the effects of competing cognitive demands on the stepping patterns of stroke survivors, compared to healthy age-match adults, during turning as a putative mechanism for falls. Methods: Walking and turning (90Âș) was assessed under single (walking and turning alone) and dual task (subtracting serial 3s while walking and turning) conditions using an electronic, pressure-sensitive walkway. Dependent measures were time to turn, variability in time to turn, step length, step width and single support time during three steps of the turn. Turning ability in single and dual task conditions was compared between stroke survivors (n= 17, mean ± SD: 59 ± 113 months post-stroke, 64 ± 10 years of age) and age-matched healthy counterparts (n = 15). Results: Both groups took longer, were more variable, tended to widen the second step and, crucially, increased single support time on the inside leg of the turn while turning and distracted. Conclusions. Increased single support time during turning may represent biomechanical mechanism, within stepping patterns of turning under distraction, for increased risk of falls for both stroke survivors and older adults

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    Get PDF
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed

    The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs

    No full text
    Face masks and personal respirators are used to curb the transmission of SARS-CoV-2 in respiratory droplets; filters embedded in some personal protective equipment could be used as a non-invasive sample source for applications, including at-home testing, but information is needed about whether filters are suited to capture viral particles for SARS-CoV-2 detection. In this study, we generated inactivated virus-laden aerosols of 0.3-2 microns in diameter (0.9 mu m mean diameter by mass) and dispersed the aerosolized viral particles onto electrostatic face mask filters. The limit of detection for inactivated coronaviruses SARS-CoV-2 and HCoV-NL63 extracted from filters was between 10 to 100 copies/filter for both viruses. Testing for SARS-CoV-2, using face mask filters and nasopharyngeal swabs collected from hospitalized COVID-19-patients, showed that filter samples offered reduced sensitivity (8.5% compared to nasopharyngeal swabs). The low concordance of SARS-CoV-2 detection between filters and nasopharyngeal swabs indicated that number of viral particles collected on the face mask filter was below the limit of detection for all patients but those with the highest viral loads. This indicated face masks are unsuitable to replace diagnostic nasopharyngeal swabs in COVID-19 diagnosis. The ability to detect nucleic acids on face mask filters may, however, find other uses worth future investigation
    corecore