231 research outputs found

    High power femtosecond source based on passively mode-locked 1055nm VECSEL and Yb-fibre power amplifier

    No full text
    We report 5 ns pulses at 160 W average power and 910 repetition rate from a passively mode-locked VECSEL source seeding an Yb-doped fibre power amplifier. The amplified pulses were compressed to 291 fs duration

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    Lattice calculation of 1+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    South Atlantic Interbasin Exchanges of Mass, Heat, Salt and Anthropogenic Carbon

    Get PDF
    The exchange of mass, heat, salt and anthropogenic carbon (Cant) between the South Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S) boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with an overturning circulation that exports freshwater from the North Atlantic, and consistent with a bistable Meridional Overturning Circulation (MOC), under conditions of excess freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC) transport, south of the Subtropical Front, is compensated by a 15.9±2.3 Sv westward flow along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric anthropogenic carbon of 0.51±0.37 PgC yr-1, of which 0.18±0.12 PgC yr-1 accumulates and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is associated with a 0.11 PgC yr-1 Cant overturning. The remainder is transported into the Atlantic Ocean north of 24°S (0.28±0.16 PgC yr-1) and Indian sector of Southern Ocean (1.12±0.43 PgC yr-1), having been enhanced by inflow through Drake Passage (1.07±0.44 PgC yr-1). This underlines the importance of the South Atlantic as a crucial element of the anthropogenic carbon sink in the global oceans

    The Business Model: Recent Developments and Future Research

    Get PDF
    This article provides a broad and multifaceted review of the received literature on business models in which the authors examine the business model concept through multiple subject-matter lenses. The review reveals that scholars do not agree on what a business model is and that the literature is developing largely in silos, according to the phenomena of interest of the respective researchers. However, the authors also found emerging common themes among scholars of business models. Specifically, (1) the business model is emerging as a new unit of analysis; (2) business models emphasize a system-level, holistic approach to explaining how firms “do business”; (3) firm activities play an important role in the various conceptualizations of business models that have been proposed; and (4) business models seek to explain how value is created, not just how it is captured. These emerging themes could serve as catalysts for a more unified study of business models

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
    corecore