238 research outputs found

    In vitro Antimicrobial Potentialities of Different Solvent Extracts of Ethnomedicinal Plants against Clinically Isolated Human Pathogens

    Get PDF
    Antimicrobial efficiency of 20 ethnomedicinal plants (crude leaf extracts) were examined using water, benzene and acetone as solvents and tested against seven human pathogens like Escherichia coli (MDR), Staphylococcus aureus (MDR), Klebsiella pneumoniae, Bacillus cereus, Vibrio cholerae and Candida albicans. Among the tested plants, Albizia lebbeck (L.) Willd, Cleistanthus collinus (Roxb.) Bth., Emblica officinalis (Phyllanthus emblica L.), Eucalyptus deglupta [Eucalyptus tereticornis (Smith)], Eupatorium odoratum [Chromolaena odorata (L.) King & Robin], Oxalis corniculata L., Hevea brasiliensis (Willd.ex A. Juss.) Mull. Arg., and Lantana camara L. showed profound antimicrobial activity (> 11 mm inhibition zone), MIC (0.35-0.80 mg / ml) and MBC (0.45 – 1.0 mg / ml) values. The organic extracts of these plants could be a possible source to obtain new and effective herbal medicines to treat infections, which may caused by multi-drug resistant (MDR) strains of microorganisms from community as well as hospital settings. The study for the first time justified the ethnic uses of plant parts against infectious diseases

    Prediction of protein interactions on HIV-1-human PPI data using a novel closure-based integrated approach

    Get PDF
    Discovering Protein-Protein Interactions (PPI) is a new interesting challenge in computational biology. Identifying interactions among proteins was shown to be useful for finding new drugs and preventing several kinds of diseases. The identification of interactions between HIV-1 proteins and Human proteins is a particular PPI problem whose study might lead to the discovery of drugs and important interactions responsible for AIDS. We present the FIST algorithm for extracting hierarchical bi-clusters and minimal covers of association rules in one process. This algorithm is based on the frequent closed itemsets framework to efficiently generate a hierarchy of conceptual clusters and non-redundant sets of association rules with supporting object lists. Experiments conducted on a HIV-1 and Human proteins interaction dataset show that the approach efficiently identifies interactions previously predicted in the literature and can be used to predict new interactions based on previous biological knowledge

    Prediction of protein interactions on HIV-1-human PPI data using a novel closure-based integrated approach

    Get PDF
    Discovering Protein-Protein Interactions (PPI) is a new interesting challenge in computational biology. Identifying interactions among proteins was shown to be useful for finding new drugs and preventing several kinds of diseases. The identification of interactions between HIV-1 proteins and Human proteins is a particular PPI problem whose study might lead to the discovery of drugs and important interactions responsible for AIDS. We present the FIST algorithm for extracting hierarchical bi-clusters and minimal covers of association rules in one process. This algorithm is based on the frequent closed itemsets framework to efficiently generate a hierarchy of conceptual clusters and non-redundant sets of association rules with supporting object lists. Experiments conducted on a HIV-1 and Human proteins interaction dataset show that the approach efficiently identifies interactions previously predicted in the literature and can be used to predict new interactions based on previous biological knowledge

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR

    Slow interatomic Coulombic decay of multiply excited neon clusters

    Get PDF
    Ne clusters ( 3c5000 atoms) were resonantly excited (2p\u21923s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
    corecore