394 research outputs found

    Candidate Performance On The Business Environment And Concepts Section Of The CPA Exam

    Get PDF
    This paper examines how differences in curricular design of undergraduate accounting programs influence pass rates on the Business Environment and Concepts Section of the CPA Exam. The association of the pass rate of a school's accounting graduates to the design of the schools accounting program and to other school characteristics was examined with linear regression models. Characteristics considered were semester hours in courses covered by the CPA exam section, entrance exam scores of the schools' freshmen, whether the schools were AACSB accredited and whether the schools were public or private institutions. The number of cost and managerial accounting semester hours was consistently found to be a significant determinant of success on the new section of the CPA exam.

    Stock assessment of Queensland east coast saddletail snapper (Lutjanus malabaricus), Australia

    Get PDF
    In Queensland, east coast saddletail snapper (Lutjanus malabaricus) are mostly line-caught by commercial and recreational fishers, with some recreational spearfishing take. Saddletail snapper are believed to be a single stock (population) off Queensland’s east coast. This is the first stock assessment of the Queensland east coast stock. The assessment implemented a two-sex population model fit to age and length data, constructed within the Stock Synthesis modelling framework. The model incorporated data spanning the period from financial years 1988 to 2020 including commercial logbook harvest (1988–2020), recreational, charter and Indigenous survey harvest estimates (2000–2019), length distribution data from boat-ramp surveys (2017–2020) and age-length (2018–2020). Twenty-one model scenarios were run, covering a wide range of modelling assumptions. Base case (preferred) scenario results suggested that biomass declined between 1961 and 2017 to 19% unfished biomass. In 2020, the stock level was estimated to be 23% (13–73% range across scenarios) unfished biomass. The harvest consistent with a biomass ratio of 60%, the Sustainable Fisheries Strategy longer-term target, was estimated at 159 t (146–348 t range across scenarios and all sectors). The recommended harvest in the 2021 financial year is 12 t (0–494 t range across scenarios) to achieve this target by 2040

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Time-delayed model of immune response in plants

    Get PDF
    In the studies of plant infections, the plant immune response is known to play an essential role. In this paper we derive and analyse a new mathematical model of plant immune response with particular account for post-transcriptional gene silencing (PTGS). Besides biologically accurate representation of the PTGS dynamics, the model explicitly includes two time delays to represent the maturation time of the growing plant tissue and the non-instantaneous nature of the PTGS. Through analytical and numerical analysis of stability of the steady states of the model we identify parameter regions associated with recovery and resistant phenotypes, as well as possible chronic infections. Dynamics of the system in these regimes is illustrated by numerical simulations of the model

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Tumour stage, treatment, and survival of women with high-grade serous tubo-ovarian cancer in UKCTOCS: an exploratory analysis of a randomised controlled trial

    Get PDF
    Background: In UKCTOCS, there was a decrease in the diagnosis of advanced stage tubo-ovarian cancer but no reduction in deaths in the multimodal screening group compared with the no screening group. Therefore, we did exploratory analyses of patients with high-grade serous ovarian cancer to understand the reason for the discrepancy. Methods: UKCTOCS was a 13-centre randomised controlled trial of screening postmenopausal women from the general population, aged 50–74 years, with intact ovaries. The trial management system randomly allocated (2:1:1) eligible participants (recruited from April 17, 2001, to Sept 29, 2005) in blocks of 32 using computer generated random numbers to no screening or annual screening (multimodal screening or ultrasound screening) until Dec 31, 2011. Follow-up was through national registries until June 30, 2020. An outcome review committee, masked to randomisation group, adjudicated on ovarian cancer diagnosis, histotype, stage, and cause of death. In this study, analyses were intention-to-screen comparisons of women with high-grade serous cancer at censorship (Dec 31, 2014) in multimodal screening versus no screening, using descriptive statistics for stage and treatment endpoints, and the Versatile test for survival from randomisation. This trial is registered with the ISRCTN Registry, 22488978, and ClinicalTrials.gov, NCT00058032. Findings: 202 562 eligible women were recruited (50 625 multimodal screening; 50 623 ultrasound screening; 101 314 no screening). 259 (0·5%) of 50 625 participants in the multimodal screening group and 520 (0·5%) of 101 314 in the no screening group were diagnosed with high-grade serous cancer. In the multimodal screening group compared with the no screening group, fewer were diagnosed with advanced stage disease (195 [75%] of 259 vs 446 [86%] of 520; p=0·0003), more had primary surgery (158 [61%] vs 219 [42%]; p<0·0001), more had zero residual disease following debulking surgery (119 [46%] vs 157 [30%]; p<0·0001), and more received treatment including both surgery and chemotherapy (192 [74%] vs 331 [64%]; p=0·0032). There was no difference in the first-line combination chemotherapy rate (142 [55%] vs 293 [56%]; p=0·69). Median follow-up from randomisation of 779 women with high-grade serous cancer in the multimodal and no screening groups was 9·51 years (IQR 6·04–13·00). At censorship (June 30, 2020), survival from randomisation was longer in women with high-grade serous cancer in the multimodal screening group than in the no screening group with absolute difference in survival of 6·9% (95% CI 0·4–13·0; p=0·042) at 18 years (21% [95% CI 15·6–26·2] vs 14% [95% CI 10·5–17·4]). Interpretation: To our knowledge, this is the first evidence that screening can detect high-grade serous cancer earlier and lead to improved short-term treatment outcomes compared with no screening. The potential survival benefit for women with high-grade serous cancer was small, most likely due to only modest gains in early detection and treatment improvement, and tumour biology. The cumulative results of the trial suggest that surrogate endpoints for disease-specific mortality should not currently be used in screening trials for ovarian cancer. Funding: National Institute for Health Research, Medical Research Council, Cancer Research UK, The Eve Appeal

    Diverse Beliefs and Time Variability of Risk Premia

    Get PDF
    Why do risk premia vary over time? We examine this problem theoretically and empirically by studying the effect of market belief on risk premia. Individual belief is taken as a fundamental primitive state variable. Market belief is observable; it is central to the empirical evaluation and we show how to measure it. Our asset pricing model is familiar from the noisy REE literature but we adapt it to an economy with diverse beliefs. We derive equilibrium asset prices and implied risk premium. Our approach permits a closed form solution of prices; hence we trace the exact effect of market belief on the time variability of asset prices and risk premia. We test empirically the theoretical conclusions. Our main result is that, above the effect of business cycles on risk premia, fluctuations in market belief have significant independent effect on the time variability of risk premia. We study the premia on long positions in Federal Funds Futures, 3- and 6-month Treasury Bills (T-Bills). The annual mean risk premium on holding such assets for 1-12 months is about 40-60 basis points and we find that, on average, the component of market belief in the risk premium exceeds 50% of the mean. Since time variability of market belief is large, this component frequently exceeds 50% of the mean premium. This component is larger the shorter is the holding period of an asset and it dominates the premium for very short holding returns of less than 2 months. As to the structure of the premium we show that when the market holds abnormally favorable belief about the future payoff of an asset the market views the long position as less risky hence the risk premium on that asset declines. More generally, periods of market optimism (i.e. "bull" markets) are shown to be periods when the market risk premium is low while in periods of pessimism (i.e. "bear" markets) the market's risk premium is high. Fluctuations in risk premia are thus inversely related to the degree of market optimism about future prospects of asset payoffs. This effect is strong and economically very significant

    The contributions of citizen science to SDG monitoring and reporting on marine plastics

    Get PDF
    The accumulation of plastic litter in marine environments is a major environmental challenge along with the difficulties in their measurement because of the massive size of the oceans and vast circulation of plastic litter, which is being addressed as part of the United Nations (UN) Sustainable Development Goals (SDGs). Citizen science, public participation in scientific research and knowledge production, represents a potential source of data for SDG monitoring and reporting of marine plastic litter, yet there has been no evidence of its use to date. Here, we show how Ghana has become the first country to integrate existing citizen science data on marine plastic litter in their official monitoring and reporting of SDG indicator 14.1.1b for the years 2016–2020, which has also helped to bridge local data collection efforts with global monitoring processes and policy agendas by leveraging the SDG framework. The results have been used in Ghana’s 2022 Voluntary National Review of the SDGs, and reported on the UN SDG Global Database, as well as helping to inform relevant policies in Ghana. In addition, here, we present a pathway that can be adopted by the relevant government authorities in other countries that have an interest in following a similar citizen science data validation and reporting process for this indicator and potentially others
    corecore