35 research outputs found
СРАВНИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ПРИМЕНЕНИЯ СТЕНТОВ С ЛЕКАРСТВЕННЫМ И КАРБОНОВЫМ ПОКРЫТИЕМ ДЛЯ ЛЕЧЕНИЯ ПАЦИЕНТОВ СО ВСЕМИ ФОРМАМИ ОСТРОГО КОРОНАРНОГО СИНДРОМА В ОТДАЛЕННОМ ПЕРИОДЕ НАБЛЮДЕНИЯ
Purpose. To study the clinical efficiency and safety of application of drug-eluting and carbonic stents in patients with different forms of acute coronary syndrome in a long-term follow-up period.Materials and methods. The study enrolled 600 patients with acute coronary syndrome (STEMI – 197 patients; nonSTEMI – 208 patients; unstable angina – 195 patients). Clinical outcomes of interventions in patients enrolled into the study were evaluated prospectively after 12 months.Results. Intergroup analyses of long-term results of implantation of sirolimus-eluting stents, everolimus-eluting stents with stents with modified carbon surface showed a significant difference in the incidence of restenosis and repeat revascularization in favour of drug-eluting stents (р < 0,05 in all the groups by indicators of repeat revascularization and restenosis incidence for each drug). The fatality rate both from cardiac and other reasons didn’t differ among groups of patients. Intravascular ultrasound test demonstrated the advantage of sirolimuseluting stents over carbonic stents by the indicator of late lumen loss (STEMI – 0,20 mm vs. 0,65 mm; nonSTEMI – 0,22 mm vs. 0,67 mm; unstable angina – 0,20 mm vs. 0,65 mm, р < 0,05); and the advantage of everolimus-eluting stents by this indicator (STEMI – 0,16 mm vs. 0,65 mm, nonSTEMI – 0,16 mm vs. 0,67 mm, unstable angina – 0,18 mm vs. 0,65 mm, р < 0,05).Conclusions. On the basis of the performed analyses the present study demonstrated a high clinical efficiency and safety of application of drug-eluting and carbonic stents in patients with different forms of acute coronary syndrome in a long-term follow-up period.Цель. Изучить клиническую эффективность и безопасность применения стентов с лекарственным и карбоновым покрытием у больных с разными формами острого коронарного синдрома в отдаленном периоде наблюдения.Материалы и методы. В исследование вошло 600 пациентов с острым коронарным синдромом (ОИМпST – 197 человек; ОИМбпST – 208 человек; НС – 195 человек). Клинические результаты вмешательств у больных, включенных в исследование, оценивались на проспективной основе у пациентов через 12 месяцев.Результаты. Межгрупповой анализ по отдаленным результатам имплантации сиролимус покрытых стентов, эверолимус покрытых стентов со стентами с модифицированной карбоновой поверхностью показал достоверную разницу по частоте развития рестеноза и частоте выполнения повторных реваскуляризаций в пользу стентов с лекарственным покрытием (р < 0,05 во всех группах по показателям повторной реваскуляризации и частоте развития рестеноза для каждого лекарственного препарата). Частота смерти как по сердечным причинам, так и другим не различалась между группами пациентов. Внутрисосудистое ультразвуковое исследование продемонстрировало преимущество стентов, покрытых сиролимусом, относительно стентов с карбоновым покрытием по показателю поздней потери просвета сосуда (ОИМпST – 0,20 мм против 0,65 мм; ОИМбпST – 0,22 мм против 0,67 мм; НС – 0,20 мм против 0,65 мм, р < 0,05); и преимущество стентов, покрытых эверолимусом, по данному показателю (ОИМпST – 0,16 мм против 0,65 мм, ОИМбпST – 0,16 мм против 0,67 мм, НС – 0,18 мм против 0,65 мм, р < 0,05).Выводы. На основании выполненного анализа в представленном исследовании продемонстрирована высокая клиническая эффективность и безопасность применения стентов с лекарственным и карбоновым покрытиями в отдаленном периоде наблюдения у больных с различными формами острого коронарного синдрома
Comparison of open femoral exposure and percutaneous access in endovascular reconstruction of the thoracic aorta: a two-center retrospective study
Aim. To analyze the efficacy and safety of the percutaneous transfemoral puncture technique for TEVAR (thoracis endovascular aortic repair).Material and methods. The retrospective study included 89 patients with aortic pathologies, for whom endovascular repair was performed: 51 patients (57%) with aortic dissection (type I DeBakey — 30 cases (58,8%) and type III — 21 (41,2%)), 38 (43%) patients with aortic aneurism. 82% of patients were male, the median age was 57 years (minimum age 17 years, maximum age 75 years). All patients were divided into two groups: in the first group (48 patients) endovascular aortic repair was performed under endotracheal anesthesia with open femoral exposure of the common femoral artery (CFA), in the second group (41 patients) — by percutaneous puncture method under local anesthesia. Technical and clinical aspects of procedures were analyzed.Results. Technical success of endovascular repair was achieved in 100% cases in both groups. The duration of the operation in the group with percutaneous access was statically significantly shorter (120 (94-150) minutes vs 87(60-120) minutes, p=0,001). Also, the time spent by patients in the intensive care unit and the period of hospitalization (18 (14-22) hours versus 1 (0-3) hours, p=0,001; 5 (4-6) days versus 4 (3-5) days, p=0,03) was shorter. In the open access group 2 (4,2%) patients developed access-related complications - acute thrombosis of the common femoral artery and hematoma of the postoperative wound, which required additional surgical aid - thrombectomy from the CFA, the second patient had evacuation of the hematoma of the postoperative wound. Cite-related complications in the second group were not observed. No major complications including neurological deficits and hospital mortality were observed in both groups.Conclusions. Thoracic endovascular aortic repair (TEVAR) using percutaneous access under local anesthesia in stable patients has proven to be safe and effective. The operation time is significantly reduced and this approach in most cases eliminates the need for the patient to stay in the intensive care unit in the early postoperative period. Possibility of early mobilization of the patient appears with reducing of the duration of hospitalization
Fungal planet description sheets: 951–1041
Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense fromanunidentifiedmarinesponge. Argentina , Geastrum wrightii onhumusinmixedforest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.)on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles , Lactifluus guanensis onsoil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna fromcarbonatiteinKarstcave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae onwood. Cyprus , Clavulina iris oncalcareoussubstrate. France , Chromosera ambigua and Clavulina iris var. occidentalis onsoil. French West Indies , Helminthosphaeria hispidissima ondeadwood. Guatemala , Talaromyces guatemalensis insoil. Malaysia , Neotracylla pini (incl. Tracyllales ord. nov. and Neotra- cylla gen. nov.)and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae onforestfloor. Portugal , Trichoderma aestuarinum from salinewater. Russia , Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduouswoodorsoil. South Africa , Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.)onleavesof Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme , Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.)onleaflitterof Eugenia capensis , Cyphellophora goniomatis on leaves of Gonioma kamassi , Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.)onleavesof Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa , Harzia metro sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopota- myces gen. nov.)onleavesof Phragmites australis , Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata , Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai , Neokirramyces syzygii (incl. Neokirramyces gen. nov.)onleafspots o
Fungal Planet description sheets: 1284–1382
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi oncorticatedwood. UK, Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes
The Gravitational Universe
The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
Fungal Planet description sheets : 951–1041
Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil.
South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots ofEucalyptus grandis x urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficiumon leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter ofEugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl.Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladiumeucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp.macrocarpa, Harzia metro-sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamycesgen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosilliamayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloesp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesiastrelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam.nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicilliumcuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpusfalcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi,Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidiumblechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomycesknysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood ingoldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycinacortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensison dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litterof Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris.Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis onleaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomycesjuncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomycesmelaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides x lanceolata, Pseudocamarosporiumeucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascusturneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii onleaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological andculture characteristics are supported by DNA barcodes
Ten millennia of hepatitis B virus evolution
Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between similar to 10,500 and similar to 400 years ago. We date the most recent common ancestor of all HBV lineages to between similar to 20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for similar to 4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.Molecular Technology and Informatics for Personalised Medicine and Healt
Fungal Planet description sheets: 1284-1382
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. [...]P.R. Johnston thanks J. Sullivan (Lincoln University)
for the habitat image of Kowai Bush, Duckchul Park (Manaaki Whenua –
Landcare Research) for the DNA sequencing, and the New Zealand Department
of Conservation for permission to collect the specimens; this research
was supported through the Manaaki Whenua – Landcare Research Biota
Portfolio with funding from the Science and Innovation Group of the New
Zealand Ministry of Business, Innovation and Employment. V. Hubka was
supported by the Czech Ministry of Health (grant number NU21-05-00681),
and is grateful for the support from the Japan Society for the Promotion of
Science – grant-in-aid for JSPS research fellow (grant no. 20F20772).
K. Glässnerová was supported by the Charles University Grant Agency (grant
No. GAUK 140520). J. Trovão and colleagues were financed by FEDERFundo
Europeu de Desenvolvimento Regional funds through the COMPETE
2020 – Operational Programme for Competitiveness and Internationalisation
(POCI), and by Portuguese funds through FCT – Fundação para a Ciência
e a Tecnologia in the framework of the project POCI-01-0145-FEDER-PTDC/
EPH-PAT/3345/2014. This work was carried out at the R&D Unit Centre for
Functional Ecology – Science for People and the Planet (CFE), with reference
UIDB/04004/2020, financed by FCT/MCTES through national funds
(PIDDAC). J. Trovão was also supported by POCH – Programa Operacional
Capital Humano (co-funding by the European Social Fund and national
funding by MCTES), through a ‘FCT – Fundação para a Ciência e
Tecnologia’ PhD research grant (SFRH/BD/132523/2017). D. Haelewaters
acknowledges support from the Research Foundation – Flanders (Junior
Postdoctoral Fellowship 1206620N). M. Loizides and colleagues are grateful
to Y. Cherniavsky for contributing collections AB A12-058-1 and AB A12-
058-2, and Á. Kovács and B. Kiss for their help with molecular studies of
these specimens. C. Zmuda is thanked for assisting with the collection of
ladybird specimens infected with Hesperomyces parexochomi. A.V. Kachalkin
and colleagues were supported by the Russian Science Foundation
(grant No. 19-74-10002). The study of A.M. Glushakova was carried out as
part of the Scientific Project of the State Order of the Government of Russian
Federation to Lomonosov Moscow State University No. 121040800174-6.
S. Nanu acknowledges the Kerala State Council for Science, Technology
and Environment (KSCSTE) for granting a research fellowship and is grateful
to the Chief Conservator of Forests and Wildlife for giving permission to
collect fungal samples. A. Bañares and colleagues thank L. Monje and
A. Pueblas of the Department of Drawing and Scientific Photography at the
University of Alcalá for their help in the digital preparation of the photographs,
and J. Rejos, curator of the AH herbarium for his assistance with the specimens
examined in the present study. The research of V. Antonín received
institutional support for long-term conceptual development of research institutions
provided by the Ministry of Culture (Moravian Museum, ref.
MK000094862). The studies of E.F. Malysheva, V.F. Malysheva, O.V. Morozova,
and S.V. Volobuev were carried out within the framework of a research
project of the Komarov Botanical Institute RAS, St Petersburg, Russia
(АААА-А18-118022090078-2) using equipment of its Core Facility Centre
‘Cell and Molecular Technologies in Plant Science’.The study of A.V. Alexandrova
was carried out as part of the Scientific Project of the State Order
of the Government of Russian Federation to Lomonosov Moscow State
University No. 121032300081-7. The Kits van Waveren Foundation (Rijksherbariumfonds
Dr E. Kits van Waveren, Leiden, Netherlands) contributed
substantially to the costs of sequencing and travelling expenses for
M.E. Noordeloos. The work of B. Dima was partly supported by the ÚNKP-
20-4 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and
Innovation Fund. The work of L. Nagy was supported by the ‘Momentum’
program of the Hungarian Academy of Sciences (contract No. LP2019-
13/2019 to L.G.N.). G.A. Kochkina and colleagues acknowledge N. Demidov
for the background photograph, and N. Suzina for the SEM photomicrograph.
The research of C.M. Visagie and W.J. Nel was supported by the National
Research Foundation grant no 118924 and SFH170610239162. C. Gil-Durán
acknowledges Agencia Nacional de Investigación y Desarrollo, Ministerio
de Ciencia, Tecnología, Conocimiento e Innovación, Gobierno de Chile, for
grant ANID – Fondecyt de Postdoctorado 2021 – N° 3210135. R. Chávez
and G. Levicán thank DICYT-USACH and acknowledges the grants INACH
RG_03-14 and INACH RT_31-16 from the Chilean Antarctic Institute, respectively.
S. Tiwari and A. Baghela would like to acknowledge R. Avchar
and K. Balasubramanian from the Agharkar Research Institute, Pune, Maharashtra
for helping with the termite collection. S. Tiwari is also thankful to
the University Grants Commission, Delhi (India) for a junior research fellowship
(827/(CSIR-UGC NET DEC.2017)). R. Lebeuf and I. Saar thank D. and
H. Spencer for collecting
and photographing the holotype of C. bondii, and
R. Smith for photographing the habitat. A. Voitk is thanked for helping with
the colour plate and review of the manuscript, and the Foray Newfoundland
and Labrador for providing the paratype material. I. Saar was supported by
the Estonian Research Council (grant PRG1170) and the European Regional
Development Fund (Centre of Excellence EcolChange). M.P.S. Câmara
acknowledges the ‘Conselho Nacional de Desenvolvimento Científico
e Tecnológico – CNPq’ for the research productivity fellowship, and financial
support (Universal number 408724/2018-8). W.A.S. Vieira acknowledges
the ‘Coordenação de Aperfeiçoamento Pessoal de Ensino Superior – CAPES’
and the ‘Programa Nacional de Pós-Doutorado/CAPES – PNPD/CAPES’ for
the postdoctoral fellowship. A.G.G. Amaral acknowledges CNPq, and
A.F. Lima and I.G. Duarte acknowledge CAPES for the doctorate fellowships.
F. Esteve-Raventós and colleagues were financially supported by FEDER/
Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación
(Spain)/ Project CGL2017-86540-P. The authors would like to
thank L. Hugot and N. Suberbielle (Conservatoire Botanique National de
Corse, Office de l’Environnement de la Corse, Corti) for their help. The research
of E. Larsson is supported by The Swedish Taxonomy Initiative, SLU
Artdatabanken, Uppsala. Financial support was provided to R.J. Ferreira by
the National Council for Scientific and Technological Development (CNPq),
and to I.G. Baseia, P.S.M. Lúcio and M.P. Martín by the National Council for
Scientific and Technological Development (CNPq) under CNPq-Universal
2016 (409960/2016-0) and CNPq-visiting researcher (407474/2013-7).
J. Cabero and colleagues wish to acknowledge A. Rodríguez for his help to
describe Genea zamorana, as well as H. Hernández for sharing information
about the vegetation of the type locality. S. McMullan-Fisher and colleagues
acknowledge K. Syme (assistance with illustrations), J. Kellermann (translations),
M. Barrett (collection, images and sequences), T. Lohmeyer (collection
and images) and N. Karunajeewa (for prompt accessioning). This research
was supported through funding from Australian Biological Resources Study
grant (TTC217-06) to the Royal Botanic Gardens Victoria. The research of
M. Spetik and co-authors was supported by project No. CZ.02.1.01/0.0/0.0
/16_017/0002334. N. Wangsawat and colleagues were partially supported
by NRCT and the Royal Golden Jubilee Ph.D. programme, grant number
PHD/0218/2559. They are thankful to M. Kamsook for the photograph of the
Phu Khiao Wildlife Sanctuary and P. Thamvithayakorn for phylogenetic illustrations.
The study by N.T. Tran and colleagues was funded by Hort Innovation
(Grant TU19000). They also thank the turf growers who supported
their surveys and specimen collection. N. Matočec, I. Kušan, A. Pošta,
Z. Tkalčec and A. Mešić thank the Croatian Science Foundation for their
financial support under the project grant HRZZ-IP-2018-01-1736 (ForFungiDNA).
A. Pošta thanks the Croatian Science Foundation for their support
under the grant HRZZ-2018-09-7081. A. Morte is grateful to Fundación
Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia (20866/
PI/18) for financial support. The research of G. Akhmetova, G.M. Kovács,
B. Dima and D.G. Knapp was supported by the National Research, Development
and Innovation Office, Hungary (NKFIH KH-130401 and K-139026),
the ELTE Thematic Excellence Program 2020 supported by the National
Research, Development and Innovation Office (TKP2020-IKA-05) and the
Stipendium Hungaricum Programme. The support of the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and the Bolyai+
New National Excellence Program of the Ministry for Innovation and Technology
to D.G. Knapp is highly appreciated. F.E. Guard and colleagues are
grateful to the traditional owners, the Jirrbal and Warungu people, as well
as L. and P. Hales, Reserve Managers, of the Yourka Bush Heritage Reserve.
Their generosity, guidance, and the opportunity to explore the Bush Heritage
Reserve on the Einasleigh Uplands in far north Queensland is greatly appreciated.
The National Science Foundation (USA) provided funds
(DBI#1828479) to the New York Botanical Garden for a scanning electron
microscope used for imaging the spores. V. Papp was supported by the
ÚNKP-21-5 New National Excellence Program of the Ministry for Innovation
and Technology from the National Research, Development and Innovation
Fund of Hungary. A.N. Miller thanks the WM Keck Center at the University
of Illinois Urbana – Champaign for sequencing Lasiosphaeria deviata.
J. Pawłowska acknowledges support form National Science Centre, Poland
(grant Opus 13 no 2017/25/B/NZ8/00473). The research of T.S. Bulgakov
was carried out as part of the State Research Task of the Subtropical Scientific
Centre of the Russian Academy of Sciences (Theme No. 0492-2021-
0007). K. Bensch (Westerdijk Fungal Biodiversity Institute, Utrecht) is thanked
for correcting the spelling of various Latin epithets.Peer reviewe
Ten millennia of hepatitis B virus evolution
Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic
EFFICACY AND SAFETY OF SINGLE STAGE ENDOVASCULAR INTERVENTIONS WITH TRANSCATHETER IMPLANTING OF AORTIC VALVE
Transcatheter implanting of aortic valve (TIAV) in critical aortic stenosis is a separate manipulation requiring thorough preparation. Among patients with critical aortic stenosis from a group of endovascular correction, there is a high prevalence of comorbid atherosclerotic lesions in coronary, carotid arteries, and other pathologies, manageable only interventionally.Aim. To assess the efficacy and safety of single-moment performing of TIAV and additional endovascular interventions.Material and methods. From the year 2011, in our clinic endovascular implanting of aortic valve was done for 125 patients with aortic valve dysfunction, in 51% (64 patients) had coronary, renal and carotid arteries lesion, aneurysmatic dilation of abdominal aorta. In 31 (48%) cases together with endovascular valve placement additionally endovascular interventions were done.Results. Technical success was reached in all 125 cases. In-patient mortality from all causes was 7.2% (9 patients), with no significant difference between combination treatment group and other patients. In 2 cases there was stenting done, of coronary and carotid arteries (with 1 case of coronary, carotid and renal arteries), as single step. In one patient there was endovascular prevention done of ischemic complications of permanent atrial fibrillation by implanting of the system Watchman (Boston Scientific, USA) and stenting of coronary arteries; in one case a single step endoprosthesing of abdominal aorta was done and coronary stenting. In concomitant interventions group there was no myocardial infarction and no significant difference in cerebrovascular events between groups.Conclusion. TIAV can be followed by single step addition of endovascular procedures if the surgical team and clinics has good experience, and with thorough planning of operation and post-surgery period