291 research outputs found

    Diffusive equilibrium in thin-films (DET) provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river

    Get PDF
    The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse-scale (5 – 10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine-scale (<1 cm) biogeochemical patterns, especially in near-surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3-. In this study, we utilised diffusive equilibrium in thin-films (DET) samplers to capture high resolution (cm-scale) vertical concentration profiles of NO3-, SO42-, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub-reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from DET samplers indicate considerable cm-scale variability in NO3- (4.4 ± 2.9 mg N/L), SO42- (9.9 ± 3.1 mg/L) and dissolved Fe (1.6 ± 2.1 mg/L) and Mn (0.2 ± 0.2 mg/L). However, the overall trend suggests the absence of substantial net chemical transformations and surface-subsurface water mixing in the shallow sediments of our sub-reach under baseflow conditions. The significance of this is that upwelling NO3--rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub-reach are not controlled exclusively by redox processes and / or hyporheic exchange flows. Deeper-seated groundwater fluxes and hydro-stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub-reach. This article is protected by copyright. All rights reserved

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Fine-Scale in Situ Measurement of Riverbed Nitrate Production and Consumption in an Armored Permeable Riverbed

    Get PDF
    Alteration of the global nitrogen cycle by man has increased nitrogen loading in waterways considerably, often with harmful consequences for aquatic ecosystems. Dynamic redox conditions within riverbeds support a variety of nitrogen transformations, some of which can attenuate this burden. In reality, however, assessing the importance of processes besides perhaps denitrification is difficult, due to a sparseness of data, especially in situ, where sediment structure and hydrologic pathways are intact. Here we show in situ within a permeable riverbed, through injections of 15N-labeled substrates, that nitrate can be either consumed through denitrification or produced through nitrification, at a previously unresolved fine (centimeter) scale. Nitrification and denitrification occupy different niches in the riverbed, with denitrification occurring across a broad chemical gradient while nitrification is restricted to more oxic sediments. The narrow niche width for nitrification is in effect a break point, with the switch from activity β€œon” to activity β€œoff” regulated by interactions between subsurface chemistry and hydrology. Although maxima for denitrification and nitrification occur at opposing ends of a chemical gradient, high potentials for both nitrate production and consumption can overlap when groundwater upwelling is strong

    Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1

    Get PDF
    Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%–30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2–3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination

    Early Steps of HIV-1 Fusion Define the Sensitivity to Inhibitory Peptides That Block 6-Helix Bundle Formation

    Get PDF
    The HIV envelope (Env) glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB) conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides) potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides

    Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT)

    Get PDF
    This research was supported financially by the European Commission FP7-MC-IEF (PIEF-GA-2012-330805), the University Centre in Svalbard (UNIS), National Geographic Society GRANT #W135-10.Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΞ© m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.Publisher PDFPeer reviewe

    B Cell Depletion in HIV-1 Subtype A Infected Ugandan Adults: Relationship to CD4 T Cell Count, Viral Load and Humoral Immune Responses

    Get PDF
    To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naΓ―ve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001). HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb) titers against subtype A (pβ€Š=β€Š0.05) and subtype CRF02_AG (pβ€Š=β€Š0.02) viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (pβ€Š=β€Š0.02) and mean titer against the 10 viruses (pβ€Š=β€Š0.0002). In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001). These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection

    A novel hybrid promoter responsive to pathophysiological and pharmacological regulation

    Get PDF
    The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli

    Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting

    Get PDF
    Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such largescale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1
    • …
    corecore