32 research outputs found
Nonlinear stability analysis of the Emden-Fowler equation
In this paper we qualitatively study radial solutions of the semilinear
elliptic equation with and on the
positive real line, called the Emden-Fowler or Lane-Emden equation. This
equation is of great importance in Newtonian astrophysics and the constant
is called the polytropic index. By introducing a set of new variables, the
Emden-Fowler equation can be written as an autonomous system of two ordinary
differential equations which can be analyzed using linear and nonlinear
stability analysis. We perform the study of stability by using linear stability
analysis, the Jacobi stability analysis (Kosambi-Cartan-Chern theory) and the
Lyapunov function method. Depending on the values of these different
methods yield different results. We identify a parameter range for where
all three methods imply stability.Comment: 12 pages; new reference added; 3 new references added; fully revised
versio
(In)finiteness of Spherically Symmetric Static Perfect Fluids
This work is concerned with the finiteness problem for static, spherically
symmetric perfect fluids in both Newtonian Gravity and General Relativity. We
derive criteria on the barotropic equation of state guaranteeing that the
corresponding perfect fluid solutions possess finite/infinite extent. In the
Newtonian case, for the large class of monotonic equations of state, and in
General Relativity we improve earlier results
An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method
In this paper we propose a collocation method for solving some well-known
classes of Lane-Emden type equations which are nonlinear ordinary differential
equations on the semi-infinite domain. They are categorized as singular initial
value problems. The proposed approach is based on a Hermite function
collocation (HFC) method. To illustrate the reliability of the method, some
special cases of the equations are solved as test examples. The new method
reduces the solution of a problem to the solution of a system of algebraic
equations. Hermite functions have prefect properties that make them useful to
achieve this goal. We compare the present work with some well-known results and
show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications
Resolved Images of Large Cavities in Protoplanetary Transition Disks
Circumstellar disks are thought to experience a rapid "transition" phase in
their evolution that can have a considerable impact on the formation and early
development of planetary systems. We present new and archival high angular
resolution (0.3" = 40-75 AU) Submillimeter Array (SMA) observations of the 880
micron dust continuum emission from 12 such transition disks in nearby
star-forming regions. In each case, we directly resolve a dust-depleted disk
cavity around the central star. Using radiative transfer calculations, we
interpret these dust disk structures in a homogeneous, parametric model
framework by reproducing their SMA visibilities and SEDs. The cavities in these
disks are large (R_cav = 15-73 AU) and substantially depleted of small
(~um-sized) dust grains, although their mass contents are still uncertain. The
structures of the remnant material at larger radii are comparable to normal
disks. We demonstrate that these large cavities are common among the
millimeter-bright disk population, comprising at least 20% of the disks in the
bright half of the millimeter luminosity (disk mass) distribution. Utilizing
these results, we assess some of the physical mechanisms proposed to account
for transition disk structures. As has been shown before, photoevaporation
models do not produce the large cavity sizes, accretion rates, and disk masses
representative of this sample. It would be difficult to achieve a sufficient
decrease of the dust optical depths in these cavities by particle growth alone:
substantial growth (to meter sizes or beyond) must occur in large (tens of AU)
regions of low turbulence without also producing an abundance of small
particles. Given those challenges, we suggest instead that the observations are
most commensurate with dynamical clearing due to tidal interactions with
low-mass companions --young brown dwarfs or giant planets on long-period
orbits.Comment: ApJ, in pres
SÄpÄturile de la Otomani (r. Marghita) / Les fouilles dâOtomani
Horedt K., Rusu Mircea, Ordentlich Ivan. SÄpÄturile de la Otomani (r. Marghita) / Les fouilles dâOtomani. In: Materiale Ći cercetÄri arheologice, N°8 1962. pp. 317-324
Modeling and simulations of plasma and sheath edges in warm-ion collision-free discharges
It has been shown recently by Kos et al. [Phys. Plasmas 25, 043509 (2018)] that the common plasma-sheath boundary is characterized by three well defined characteristic points, namely the plasma edge (PE), the sheath edge (SE) and the sonic point. Moreover, it has been shown that the sheath profiles, when properly normalized at the SE, as well as the potential drop in the plasmaâsheath transition region (PST), (region between between PE and SE) in collision-free (CF) discharges are rather independent of discharge parameters, such as the plasma source profile, ion temperature and plasma density, providing that the sheath thickness is kept well bellow the plasma length. While these findings were obtained by theoretical means under idealized discharge conditions, the question arises whether and to which extent they are relevant under more complex physical scenarios. As a first step toward answering this question the CF discharge with warm ions is examined in this work via kinetic simulation method in which some of the model assumptions, such as independence of time and the Boltzmann distribution of electrons can hardly be ensured. Special attention is payed to effects of ion creation inside the sheath. It is found that only with considerably increased sheath thickness the sonic point always shifts from SE towards the wall. Whether the absolute value of ion directional velocity at the sonic point will increase or decrease depends on the ion temperature and the source strength inside the sheath. In addition preliminary comparison of results obtained under CF assumption with the representative ones obtained with strongly enhanced Coulomb collisions (CC), indicate the relevancy of hypothesis that the VDF of B&J can be considered as a universal one in future reliable kinetic modeling and solving the plasma boundary and sheath problem in both collisional and collision-free plasmas