629 research outputs found

    Caught between Energy Demands and Food Needs: Dilemmas of Smallholder Farmers in Njoro, Kenya

    Get PDF
    Smallholders in rural Kenya, like their counterparts in tropical Africa currently face acute shortage of fuel wood for domestic use. There has been rapid population increase in the last few decades resulting in increased demand for food crops. This has led to the expansion of area under subsistence agriculture eating into indigenous forests, the traditional source of wood fuel. This situation has been compounded by the limited access to alternative sources of domestic energy in rural parts of Kenya. The recent upsurge in the cost of fossil-derived fuels as well as in hydro-generated electricity has left the smallholder farmer with wood as the sole source of fuel. This paper therefore examines the conflicting demands of domestic fuel needs and foods. Key research questions were: What are the household domestic energy demand and constraints? What is the household food demand and constraint among smallholders? How do the smallholders reconcile these competing basic needs? The paper reflects on the constraints of smallholders in their quest to fulfill their food and energy needs. The discussed model is a result based on discussions between the researchers and focus group discussions drawn from smallholder farmers. The primary data gathered from the discussions is augmented by secondary data to draw imperative implications on domestic energy use and food needs. The results indicate an average annual per capita wood fuel demand of 1.99 m3 and a deficit of 8.816 m3 per household. The deficit is usually catered for through purchase of wood fuel from the market, which has an implication on the pressure exerted on the forestry resources. This paper shows that households in Njoro have turned to desperate coping mechanisms and strategies such as use of maize straw, pruning and fallen twigs. The results of this study provide insights on how the dilemma may be resolved in a smallholder setup and suggest local policy options

    An HST Search for Lyman Continuum Emission From Galaxies at z=1.1--1.4

    Full text link
    If enough of their Lyman limit continuum escapes, star-forming galaxies could be significant contributors to the cosmic background of ionizing photons. To investigate this possibility, we obtained the first deep imaging in the far ultraviolet of eleven bright blue galaxies at intermediate redshift (z=1.1--1.4). NO Lyman continuum emission was detected. Sensitive, model-independent, upper limits of typically 2 x 10**-19 erg/sec/cm2/Ang were obtained for the ionizing flux escaping from these normal galaxies. This corresponds to lower limits on the observed ratio of 1500 to 700Ang flux of 150 up to 1000. Based on a wide range of stellar synthesis models, this suggests that less than 6%, down to less than 1%, of the available ionizing flux emitted by hot stars is escaping these galaxies. The magnitude of this spectral break at the Lyman l imit confirms that the basic premise of `Lyman break' searches for galaxies at high redshift can also be applied at intermediate redshifts. This implies that the integrated contribution of galaxies to the UV cosmic background at z around 1.2 is less than 15%, and may be less than 2%.Comment: 20 manuscript pages, which includes two tables and two figures. To be published in 1 December 2003 issue of The Astrophysical Journa

    When the optimal is not the best: parameter estimation in complex biological models

    Get PDF
    Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system, and point to the need of a theory that addresses this problem more generally

    Azobenzene-functionalized alkanethiols in self-assembled monolayers on gold

    No full text
    Self-assembledmonolayers (SAMs) of 4-trifluoromethyl-azobenzene-4'-methyleneoxy-alkanethiols (CF3–C6H4–N=N–C6H4–O–(CH2) n–SH on (111)-oriented polycrystalline gold films on mica were examined by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The spectra are analyzed with the help of density-functional-theory calculations of the isolated molecule. Only one doublet is detected in the sulphur 2p spectra of the investigated SAMs, consistent with a thiolate bond of the molecule to the gold surface. The C 1s XP spectra and the corresponding XAS π* resonance exhibit a rich structure which is assigned to the carbon atoms in the different chemical surroundings. Comparing XPS binding energies of the azobenzene moiety and calculated initial-state shifts reveals comparable screening of all C 1s core holes. While the carbon 1s XPS binding energy lies below the π*-resonance excitation-energy, the reversed order is found comparing core ionization and neutral core excitation of the nitrogen 1s core-hole of the azo group. This surprising difference in core-hole binding energies is interpreted as site-dependent polarization screening and charge transfer among the densely packed aromatic moieties. We propose that a quenching of the optical excitation within the molecular layer is thus one major reason for the low trans to cis photo-isomerization rate of azobenzene in romaticaliphatic SAMs

    Tumor growth instability and the onset of invasion

    Full text link
    Motivated by experimental observations, we develop a mathematical model of chemotactically directed tumor growth. We present an analytical study of the model as well as a numerical one. The mathematical analysis shows that: (i) tumor cell proliferation by itself cannot generate the invasive branching behaviour observed experimentally, (ii) heterotype chemotaxis provides an instability mechanism that leads to the onset of tumor invasion and (iii) homotype chemotaxis does not provide such an instability mechanism but enhances the mean speed of the tumor surface. The numerical results not only support the assumptions needed to perform the mathematical analysis but they also provide evidence of (i), (ii) and (iii). Finally, both the analytical study and the numerical work agree with the experimental phenomena.Comment: 12 pages, 8 figures, revtex

    A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations

    Full text link
    A major goal of modern computational biology is to simulate the collective behaviour of large cell populations starting from the intricate web of molecular interactions occurring at the microscopic level. In this paper we describe a simplified model of cell metabolism, growth and proliferation, suitable for inclusion in a multicell simulator, now under development (Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the proliferation dynamics of tumor cells which adapt their behaviour to respond to changes in the biochemical composition of the environment. This modeling of nutrient metabolism and cell cycle at a mesoscopic scale level leads to a continuous flow of information between the two disparate spatiotemporal scales of molecular and cellular dynamics that can be simulated with modern computers and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl

    Ranking ligand affinity for the DNA minor groove by experiment and simulation

    Get PDF
    The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences

    Research on Layer Manufacturing Techniques at Fraunhofer

    Get PDF
    Within the German Fraunhofer-Gesellschaft, the Fraunhofer Alliance Rapid Prototyping unites the competences of 12 institutes in the field of solid freeform fabrication. Covered competences are virtual and computer-aided product planning methods and techniques, the development and integration of materials and processes for different industrial sectors. This paper presents actual research results on layer manufacturing within the Fraunhofer- Gesellschaft based on examples from Fraunhofer ILT »Laser Melting - Direct manufacturing of metal parts with unique properties«, Fraunhofer IFAM »ecoMold - A novel concept to produce molds for plastic injection molding and pressure die casting« and Fraunhofer IPT »Quick manufacture, repair and modification of steel molds using Controlled Metal Build Up (CMB)«.Mechanical Engineerin

    Nitrate stable isotopes and major ions in snow and ice samples from four Svalbard sites

    Get PDF
    Increasing reactive nitrogen (N-r) deposition in the Arctic may adversely impact N-limited ecosystems. To investigate atmospheric transport of N-r to Svalbard, Norwegian Arctic, snow and firn samples were collected from glaciers and analysed to define spatial and temporal variations (1 10 years) in major ion concentrations and the stable isotope composition (delta N-15 and delta O-18) of nitrate (NO3-) across the archipelago. The delta N-15(NO3-) and delta O-18(NO3-) averaged -4 parts per thousand and 67 parts per thousand in seasonal snow (2010-11) and -9 parts per thousand and 74 parts per thousand in firn accumulated over the decade 2001-2011. East-west zonal gradients were observed across the archipelago for some major ions (non-sea salt sulphate and magnesium) and also for delta N-15(NO3-) and delta O-18(NO3-) in snow, which suggests a different origin for air masses arriving in different sectors of Svalbard. We propose that snowfall associated with long-distance air mass transport over the Arctic Ocean inherits relatively low delta N-15(NO3-) due to in-transport N isotope fractionation. In contrast, faster air mass transport from the north-west Atlantic or northern Europe results in snowfall with higher delta N-15(NO3-) because in-transport fractionation of N is then time-limited

    Thin disc, Thick Disc and Halo in a Simulated Galaxy

    Get PDF
    Within a cosmological hydrodynamical simulation, we form a disc galaxy with sub- components which can be assigned to a thin stellar disc, thick disk, and a low mass stellar halo via a chemical decomposition. The thin and thick disc populations so selected are distinct in their ages, kinematics, and metallicities. Thin disc stars are young (<6.6 Gyr), possess low velocity dispersion ({\sigma}U,V,W = 41, 31, 25 km/s), high [Fe/H], and low [O/Fe]. The thick disc stars are old (6.6<age<9.8 Gyrs), lag the thin disc by \sim21 km/s, possess higher velocity dispersion ({\sigma}U,V,W = 49, 44, 35 km/s), relatively low [Fe/H] and high [O/Fe]. The halo component comprises less than 4% of stars in the "solar annulus" of the simulation, has low metallicity, a velocity ellipsoid defined by ({\sigma}U,V,W = 62, 46, 45 km/s) and is formed primarily in-situ during an early merger epoch. Gas-rich mergers during this epoch play a major role in fuelling the formation of the old disc stars (the thick disc). This is consistent with studies which show that cold accretion is the main source of a disc galaxy's baryons. Our simulation initially forms a relatively short (scalelength \sim1.7 kpc at z=1) and kinematically hot disc, primarily from gas accreted during the galaxy's merger epoch. Far from being a competing formation scenario, migration is crucial for reconciling the short, hot, discs which form at high redshift in {\Lambda}CDM, with the properties of the thick disc at z=0. The thick disc, as defined by its abundances maintains its relatively short scale-length at z = 0 (2.31 kpc) compared with the total disc scale-length of 2.73 kpc. The inside-out nature of disc growth is imprinted the evolution of abundances such that the metal poor {\alpha}-young population has a larger scale-length (4.07 kpc) than the more chemically evolved metal rich {\alpha}-young population (2.74 kpc).Comment: Submitted to MNRAS. This version after helpful referee comments. Comments welcome to [email protected]
    • …
    corecore