1,683 research outputs found

    Time-frequency Domain Analogues of Phase Space Sub-Planck Structures

    Full text link
    We present experimental data of the frequency resolved optical gating (FROG) measurements of light pulses revealing interference features corresponding to sub-Planck structures in phase space. For superpositions of pulses a small, sub-Fourier shift in the carrier frequency leads to a state orthogonal to the initial one, although in the representation of standard time-frequency distributions these states seem to have a nonvanishing overlap.Comment: New title, minor change

    Global tectonic studies: Hotspots and anomalous topography

    Get PDF
    Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed

    Influence of GaInP ordering on the electronic quality of concentrator solar cells

    Get PDF
    The ordering phenomenon produces a reduction in the band gap of the GaInP material. Though a drawback for many optoelectronic applications, ordering can be used as an additional degree of material and device engineering freedom. The performance of the record efficiency GaInP/GaAs/Ge multijunction solar cells depends on the quality and design of the GaInP top cell, which can be affected also by ordering. The tradeoff existing between band gap and minority carrier properties, and the possibility of creating a back surface field (BSF) structure based on an order–disorder GaInP heterostructure makes the study of the ordering appealing for solar cell applications. In this work, the ordering dependency with the growth conditions and substrate orientation is studied. The results obtained are presented to enrich and extend the data available in the literature. Then the properties of order–disorder GaInP heterostructures are assessed by using them as BSF in GaInP concentrator solar cells. The external quantum efficiency (EQE) shows a good behavior of these BSF layers, but unexpectedly poor electronic quality in the active layers. Although the exact origin of this problem remains to be known, it is attributed to traps introduced by the ordered/disordered domains matrix or growth native defects. EQE measurements with bias light show a recovery of the minority carrier properties, presumably due to the saturation of the traps

    Interactive effects of iron and light limitation on the molecular physiology of the Southern Ocean diatom Fragilariopsis kerguelensis

    Get PDF
    The polar diatom Fragilariopsis kerguelensis is ubiquitous in Southern Ocean waters and is a major responder to iron fertilization, encountering large gradients in iron concentrations and light availability. We performed a comparative transcriptomic analysis of F. kerguelensis grown under varying iron and light conditions in order to investigate the molecular underpinnings that may explain its physiological response to iron and light limitation. Low iron reduced growth rates more than low light, but there was not an additive effect of low iron and low light on growth rate. Low iron treatments (saturating and low light) had the largest transcriptomic response; however, expression patterns were more similar in low light treatments (high and low iron). Under iron and light limitation, carbon fixation and amino acid, ribosome, and sulfur metabolisms were overrepresented relative to the control (iron replete, saturating light). Transcripts of genes encoding for the proteins aquaporin, proteorhodopsin, plastocyanin, and flavodoxin were overrepresented to the greatest extent in the low iron/low light treatment, indicating there may be an additive effect of iron/light colimitation at the molecular level. Iron and light replete cells demonstrated increased expression of genes encoding for the proteins ferritin, carbonic anhydrase, and numerous iron-dependent proteins relative to the growth-limiting treatments. This transcriptome analysis reveals mechanisms that may underpin the ecological success of this diatom in low iron and light environments, highlighting the important role of diversified photosynthetic isoforms, iron acquisition, unique detoxification mechanisms of reactive oxygen species, and metabolic shifts in amino acid recycling and carbon metabolism

    Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 16 (2014): 2815-2830, doi:10.1111/1462-2920.12254.A considerable fraction of the Earth's organic carbon exists in dissolved form in seawater. To investigate the roles of planktonic marine microbes in the biogeochemical cycling of this dissolved organic matter (DOM), we performed controlled seawater incubation experiments and followed the responses of an oligotrophic surface water microbial assemblage to perturbations with DOM derived from an axenic culture of Prochlorococcus, or high-molecular weight DOM concentrated from nearby surface waters. The rapid transcriptional responses of both Prochlorococcus and Pelagibacter populations suggested the utilization of organic nitrogen compounds common to both DOM treatments. Along with these responses, both populations demonstrated decreases in gene transcripts associated with nitrogen stress, including those involved in ammonium acquisition. In contrast, responses from low abundance organisms of the NOR5/OM60 gammaproteobacteria were observed later in the experiment, and included elevated levels of gene transcripts associated with polysaccharide uptake and oxidation. In total, these results suggest that numerically dominant oligotrophic microbes rapidly acquire nitrogen from commonly available organic sources, and also point to an important role for carbohydrates found within the DOM pool for sustaining the less abundant microorganisms in these oligotrophic systems.This work was supported by a National Science Foundation Science and Technology Center Award EF0424599 (E.F.D and D.M.K.), grants to D.M.K., D.J.R and E.F.D from the Gordon and Betty Moore Foundation, a gift from the Agouron Institute (to E.F.D.) and a fellowship (202180) to A.K.S. from the Canadian Institutes of Health Research (CIHR)

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    North Pacific twentieth century decadal-scale variability is unique for the past 342 years

    Get PDF
    Reconstructed sea surface temperatures (SSTs) derived from Mg/Ca measurements in nine encrusting coralline algal skeletons from the Aleutian archipelago in the northernmost Pacific Ocean reveal an overall increase in SST from 1665 to 2007. In the Aleutian SST reconstruction, decadal-scale variability is a transient feature present during the 1700s and early 1800s and then fully emerging post-1950. SSTs vary coherently with available instrument records of cyclone variance and vacillate in and out of coherence with multicentennial Pacific Northwest drought reconstructions as a response to SST-driven alterations of storm tracks reaching North America. These results indicate that an influence of decadal-scale variability on the North Pacific storm tracks only became apparent during the midtwentieth century. Furthermore, what has been assumed as natural variability in the North Pacific, based on twentieth century instrumental data, is not consistent with the long-term natural variability evident in reconstructed SSTs predating the anthropogenic influence

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
    • …
    corecore