211 research outputs found
Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search
The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a
general technique for constructing a data structure to answer approximate near
neighbor queries by using a distribution over locality-sensitive
hash functions that partition space. For a collection of points, after
preprocessing, the query time is dominated by evaluations
of hash functions from and hash table lookups and
distance computations where is determined by the
locality-sensitivity properties of . It follows from a recent
result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive
hash functions can be reduced to , leaving the query time to be
dominated by distance computations and
additional word-RAM operations. We state this result as a general framework and
provide a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework, making it a viable
replacement in practice. Using ideas from another locality-sensitive hashing
framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of
additional word-RAM operations to .Comment: 15 pages, 3 figure
Computing tolerance parameters for fixturing and feeding
Fixtures and feeders are important components of automated assembly
systems: fixtures accurately hold parts and feeders move parts into alignment.
These components can fail when part shape varies. Parametric tolerance
classes specify how much variation is allowable. In this paper we consider
fixturing convex polygonal parts using right-angle brackets and feeding
polygonal parts on conveyor belts using sequences of vertical fences. For
both cases, we define new tolerance classes and give algorithms for computing
the parameter specifications such that the fixture or feeder will work for
all parts in the tolerance class. For fixturing we give an O(1) algorithm to
compute the dimensions of rectangular tolerance zones. For feeding we give
an O(n2) algorithm to compute the radius of the largest allowable tolerance
zone around each vertex. For each, we give an O(n) time algorithm for testing
if an n-sided part is in the tolerance class
Bringing Order to Special Cases of Klee's Measure Problem
Klee's Measure Problem (KMP) asks for the volume of the union of n
axis-aligned boxes in d-space. Omitting logarithmic factors, the best algorithm
has runtime O*(n^{d/2}) [Overmars,Yap'91]. There are faster algorithms known
for several special cases: Cube-KMP (where all boxes are cubes), Unitcube-KMP
(where all boxes are cubes of equal side length), Hypervolume (where all boxes
share a vertex), and k-Grounded (where the projection onto the first k
dimensions is a Hypervolume instance).
In this paper we bring some order to these special cases by providing
reductions among them. In addition to the trivial inclusions, we establish
Hypervolume as the easiest of these special cases, and show that the runtimes
of Unitcube-KMP and Cube-KMP are polynomially related. More importantly, we
show that any algorithm for one of the special cases with runtime T(n,d)
implies an algorithm for the general case with runtime T(n,2d), yielding the
first non-trivial relation between KMP and its special cases. This allows to
transfer W[1]-hardness of KMP to all special cases, proving that no n^{o(d)}
algorithm exists for any of the special cases under reasonable complexity
theoretic assumptions. Furthermore, assuming that there is no improved
algorithm for the general case of KMP (no algorithm with runtime O(n^{d/2 -
eps})) this reduction shows that there is no algorithm with runtime
O(n^{floor(d/2)/2 - eps}) for any of the special cases. Under the same
assumption we show a tight lower bound for a recent algorithm for 2-Grounded
[Yildiz,Suri'12].Comment: 17 page
Computing the Fréchet Distance with a Retractable Leash
All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; second, they use this oracle to find the optimum from a finite set of critical values. We present a novel approach that avoids the detour through the decision version. This gives the first quadratic time algorithm for the Fréchet distance between polygonal curves in (Formula presented.) under polyhedral distance functions (e.g., (Formula presented.) and (Formula presented.)). We also get a (Formula presented.)-approximation of the Fréchet distance under the Euclidean metric, in quadratic time for any fixed (Formula presented.). For the exact Euclidean case, our framework currently yields an algorithm with running time (Formula presented.). However, we conjecture that it may eventually lead to a faster exact algorithm
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test
statistics have desirable properties for testing for the presence of spatial
autocorrelation in continuous variables. In this paper we propose two
contributions to the literature on tests for autocorrelation. First, we propose
a new test for autocorrelation in categorical variables. While some methods
currently exist for assessing spatial autocorrelation in categorical variables,
the most popular method is unwieldy, somewhat ad hoc, and fails to provide
grounds for a single omnibus test. Second, we discuss the importance of testing
for autocorrelation in data sampled from the nodes of a network, motivated by
social network applications. We demonstrate that our proposed statistic for
categorical variables can both be used in the spatial and network setting
Developing serious games for cultural heritage: a state-of-the-art review
Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented
Exploring subtle land use and land cover changes: a framework for future landscape studies
UMR AMAP, équipe 3International audienceLand cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling
"The only vaccine that we really question is the new vaccine": A qualitative exploration of the social and behavioural drivers of human papillomavirus (HPV) vaccination in Tonga.
INTRODUCTION: Human papillomavirus (HPV) vaccination is crucial for cervical cancer elimination, particularly in the Pacific where screening and treatment are limited. The HPV vaccine was introduced through schools in Tonga in November 2022 for adolescent girls. Despite high routine childhood vaccine coverage in Tonga, uptake of the HPV vaccine has been slow. This study explored the social and behavioural drivers of HPV and routine childhood vaccination in Tonga to inform tailored strategies to increase vaccine uptake. METHODS: We conducted qualitative interviews and focus groups in Nuku'alofa between June and October 2023 with parents (n = 32), adolescent girls (n = 24), teachers (n = 15), nurses (n = 7), and immunization staff (n = 5). Data were analysed thematically and mapped to the World Health Organization's Behavioural and Social Drivers of vaccination framework. RESULTS: Parents, teachers, and girls had limited knowledge of the HPV vaccine. Some feared it would encourage promiscuity or impact fertility. While trust in routine childhood vaccines was high, participants felt the COVID-19 pandemic had reduced confidence in new vaccines. Some vaccinated girls felt the HPV vaccine offered protection whereas others were afraid of side effects. Practical barriers included non-standardised consent forms that had to be returned to schools, the vaccine rollout timing, and school participation. CONCLUSION: Providing youth, parents and teachers with accurate, culturally appropriate information and supporting teachers to discuss vaccination and facilitate consent may improve HPV vaccine uptake in Tonga
Parallel Write-Efficient Algorithms and Data Structures for Computational Geometry
In this paper, we design parallel write-efficient geometric algorithms that
perform asymptotically fewer writes than standard algorithms for the same
problem. This is motivated by emerging non-volatile memory technologies with
read performance being close to that of random access memory but writes being
significantly more expensive in terms of energy and latency. We design
algorithms for planar Delaunay triangulation, -d trees, and static and
dynamic augmented trees. Our algorithms are designed in the recently introduced
Asymmetric Nested-Parallel Model, which captures the parallel setting in which
there is a small symmetric memory where reads and writes are unit cost as well
as a large asymmetric memory where writes are times more expensive
than reads. In designing these algorithms, we introduce several techniques for
obtaining write-efficiency, including DAG tracing, prefix doubling,
reconstruction-based rebalancing and -labeling, which we believe will
be useful for designing other parallel write-efficient algorithms
SeqAn An efficient, generic C++ library for sequence analysis
<p>Abstract</p> <p>Background</p> <p>The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> would not have been possible without advanced assembly algorithms. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use.</p> <p>Results</p> <p>To remedy this trend we propose the use of SeqAn, a library of efficient data types and algorithms for sequence analysis in computational biology. SeqAn comprises implementations of existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm testing and development. In this paper we describe the design and content of SeqAn and demonstrate its use by giving two examples. In the first example we show an application of SeqAn as an experimental platform by comparing different exact string matching algorithms. The second example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate that our implementation is very efficient and versatile to use.</p> <p>Conclusion</p> <p>We anticipate that SeqAn greatly simplifies the rapid development of new bioinformatics tools by providing a collection of readily usable, well-designed algorithmic components which are fundamental for the field of sequence analysis. This leverages not only the implementation of new algorithms, but also enables a sound analysis and comparison of existing algorithms.</p
- …
