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Abstract 

Land cover and land use changes can have a wide variety of ecological effects, including significant 35 

impacts on soils and water quality. In rural areas, even subtle changes in farming practices can 

affect landscape features and functions, and consequently the environment. Fine-scale analyses 

have to be performed to better understand the land cover change processes. At the same time, 

models of land cover change have to be developed in order to anticipate where changes are more 

likely to occur next. Such predictive information is essential to propose and implement sustainable 40 

and efficient environmental policies. Future landscape studies can provide a framework to forecast 

how land use and land cover changes is likely to react differently to subtle changes. 

This paper proposes a four step framework to forecast landscape futures at fine scales by coupling 

scenarios and landscape modelling approaches. This methodology has been tested on two 

contrasting agricultural landscapes located in the United States and France, to identify possible 45 

landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both 

examples demonstrate that relatively subtle land cover and land use changes can have a large 

impact on future landscapes. Results highlight how such subtle changes have to be considered in 

term of quantity, location, and frequency of land use and land cover to appropriately assess 

environmental impacts on water pollution (France) and soil erosion (US). The results highlight 50 

opportunities for improvements in landscape modelling. 

Key words: scenarios, modelling, forecasting, backcasting, LULCC, agriculture, Brittany, Corn-

Belt, prospective  

 

1. Introduction & background 55 

1.1. Subtle land use and land cover changes in agricultural areas 

Humans dominate most of the earth’s ecosystems, often with dramatic impacts on global 

biodiversity and biogeochemical cycles (Vitousek et al. 1997). For example, land use and land 

cover changes over the past 50-100 years contributed to significant changes on local-to-global 
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climate conditions, loss of biotic diversity and ecosystem health and functioning (Houghton et al. 60 

1999; Sala et al. 2000; Matson et al. 1997). The impact of agriculture is unparalleled in its 

combination of spatial extent and intensity of influence (Lambin et al. 2001). Agricultural 

intensification has induced dramatic consequences on habitats, water degradation, and biodiversity 

(Maron and Fitzsimons 2007; Butler et al. 2007; Gordon et al. 2008). 

In rural areas, even subtle changes in farming practices can affect landscape features and functions 65 

and consequently the environment. Agriculture has impacts at fine scales where landscape structure, 

including the mosaics of hedgerows and fields, affect local hydro-geochemical processes and 

species composition (Medley et al. 1995). Moreover, local alteration of land use and land cover can 

have global consequences that require local and regional solutions and the cooperation of the 

world’s policy makers, land managers, and other stakeholders in land management at local, regional 70 

and global scales (Encyclopaedia of Earth 2007). Furthermore, agricultural landscape patterns are 

driven by multi-scale driving forces – from the global economy, international policies, and regional 

soils’ properties. to local social choices and practices (Veldkamp et al. 2001). Most land use and 

land cover changes (LULCC) occur at the farm scale where these driving forces are integrated 

(Kristensen et al. 2001; Baudry and Thenail 2004). However, subtle LULC changes are often 75 

disregarded for at least two reasons. Their detection from remotely sensed data is uneasy or 

impossible (limited spatial extent, hidden by another land cover, etc.). Their changes are 

quantitatively not significant so their impacts are often underestimated and neglected. They are 

defined as land cover and land use modifications that affect the character of the land cover without 

changing its overall classification and mostly rely to local LULCC processes (Lambin and Geist, 80 

2008). Few LULCC studies are carried out at fine scales such as the farm scale, whereas most of 

them are conducted at landscape or regional scales using pixels of various sizes as units of 

observations. Fine-scale analyses, however, have to be performed to better understand the land 

cover change processes (GLP 2005), and models of land cover change have to be applied and 

refined in order to anticipate where changes are more likely to occur next. Such predictive 85 
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information is essential to propose and implement local sustainable environmental policies and 

efficient in situ actions. 

1.2. Aims of Future Landscape Studies (FLS) 

Most international research programs, e.g. International Geosphere-Biosphere Programme – IGBP 

(Lambin et al. 1999) and the Millennium Ecosystem Assessment (MEA 2003) focus upon  90 

monitoring LULCC and providing knowledge to help achieve sustainable environments. Exploring 

the future is one way to achieve this goal. Decision makers can better adapt to uncertain conditions, 

if they have tools to explore alternative futures (Godet 1986). Future studies can change the world 

by changing our vision of what we would like for it to be. Future Landscape Studies (FLS) use 

studies and approaches that draw on coupled approaches to integrate various techniques and tools 95 

including landscape and LULCC models, participatory analyses, and scenarios (Marien 2002; Kok 

et al. 2007). FLS considered here include all LULCC and landscape studies that aim to project 

future states of the land. The notion of landscape has been highly recognized as an integrated 

framework for many conservation and land resource issues that involve the interaction of local 

ecological and land use processes, global changes, socioeconomic effects, demographic changes 100 

and policies (Franklin 1993). Hobbs (1997) and Nassauer and Corry (2004) stressed the relevance 

of this integrated organization level to explore futures of landscapes to better understand landscape 

structure, functions and changes, and to assess the impacts of possible landscape dynamics on 

environmental resources at local, regional and global scales (Kok et al. 2007). Most existing FLS’s 

produce possible future states from regional, national, or global scales (Veldkamp and Fresco 1997; 105 

de Nijs et al. 2004; Verburg et al. 2008) through pixel-based mapping at more or less coarse 

resolution (e.g. from 500m² to 1km²). At such coarse resolutions, these future states can contribute 

to assessments of the consequences of LULCC on climate (IPCC 2000) and carbon sequestration 

(Schulp et al. 2008), and they focus on policy issues such as those useful for decision makers to 

define agricultural and environmental policies at the regional or global scale . We make the 110 

assumption that FLS can also provide a framework to forecast land use and land cover changes in 
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response to subtle changes. Indeed, we think that to better assess environmental impacts of future 

landscape changes, FLS should also take place at the landscape feature scale.  Fine scale FLS are 

able to render possible future states for landscape features such as hedgerows, fields, and local 

corridors that are needed for environmental assessments. The few existing fine scale FLS are 115 

presented through forms such as drawings, photo-realism (Nassauer and Corry 2004), virtual 

representation of part of the landscape (Tress and Tress 2003; Sheppard 2005) or maps (Munier et 

al. 2004). If fine-scale outputs are to effectively communicate landscape changes to better involve 

local actors and policy makers in environmental management (Bousquet and Le Page 2004), then 

another challenge is to merge both realistic portrayals and quantitative assessments of the impacts 120 

of future changes for small management units.  

1.3. Coupling landscape model and scenario based approaches to forecast subtle LULCC  

Scenario-based landscape modelling approaches are commonly used to produce FLS. Scenario 

development is a relatively new and under-explored method in land use change research (Kok et al. 

2007). Integrated approaches in which models and scenarios are developed in close interaction with 125 

stakeholders still remain a challenge. This study is part of this effort to improve coupling between 

landscape models and scenarios for fine scale FLS. 

From a ‘landscape modelling point of view’, FLS are strongly dominated by dynamic models. In 

this study, however, landscape models are considered using a wider definition that includes 

spatially explicit models, such as synchronic landscape representation techniques that use 130 

multicriteria and GIS methods (Paegelow and Olmedo 2005), virtual landscape modelling 

(Sheppard 2005), and dynamic models (Agarwal et al. 2002; Verburg et al. 2004). Synchronic 

techniques are used to model possible future states whereas dynamics models aim at simulating 

spatial properties of possible future achievements and states. From this point of view, two dynamic 

landscape modelling approaches can be distinguished: ‘bottom-up, anthropologic, process-oriented’ 135 

versus ‘top-down, land evaluation, pattern-oriented’ approaches (Geoghegan et al. 1998; Castella et 

al. 2007). The first often refers to agent-based models (Parker et al. 2003) or (pseudo) object-



 6

oriented models (Maxwell and Costanza 1997) that model micro-level land use changes and land 

users behaviour (Munier et al. 2004; Bousquet and Le Page 2004). The second approach is 

prevalent in LULCC modelling and is supported by grid-based studies. This approach is not really 140 

appropriate for fine scale LULCC modelling (Houet and Hubert-Moy 2006) and downscaling 

LULCC modelling is still a challenge (Verburg et al. 2006a).  

In the Futures field research, the use of scenarios is common. There are a number of scenarios 

typologies and several good overviews of the wide variety of techniques existing to build scenarios 

(Greeuw et al. 2000; van Notten et al. 2003; Borjeson et al. 2006). Scenarios are defined as 145 

hypothetical sequences of events constructed from mental maps or models for the purpose of 

focussing attention on causal processes and decision points (Kahn and Wiener 1967). From a 

‘scenario’s point of view’, FLS can be classified according to a broad methodological typology as 

either forecasting or backcasting scenario-based studies. According to the commonly accepted 

definitions, forecasting (or explorative) scenarios always look to the future based on forward 150 

induction and answer the question what might happen? Backcasting (or normative) scenarios are 

proactive, based on wildcard trends that break assumptions, and backward induction from the future 

to the present to answer the question how can a specific situation be reached? (Godet 1986; Bain 

and Roubelat 1994; Godet and Roubelat 1996). According to Greeuw et al. (2000) and Borjeson et 

al. (2006), forecasting scenarios in FLS are often quantitative, dynamic, model-based studies, 155 

whereas backcasting scenarios are mostly based on qualitative, narrative, and synchronic landscape 

modelling approaches. Scenarios implicitly influence the use of synchronic or dynamic landscape 

models in FLS. Explorative FLS based on dynamic models are over-represented in the literature 

compared to normative FLS. This imbalance is unfavourable for FLS considering the advantages 

and complementarities of both type of scenarios (Godet and Roubelat 1996); forecasting scenarios 160 

are relevant to emphasize trends of future uncertainties by exploring a range of driving forces based 

on trends or predefined management strategies; backcasting scenarios seek explanation or 

emergence of strategies to reach desirable or avoid unbearable situations.  
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1.4. A generic scenario-based fine scale FLS framework? 

The aim of this paper is to propose a generic framework to produce fine scale FLS. The proposed 165 

methodology is based on ‘la prospective’ approach (Godet 1986). Rather than view the future as a 

continuation of the past, in this approach future states are based on the wishes of various actors and 

the constraints imposed on them by the economic and social forces and the environment. To test its 

generic potential, we applied ‘la prospective’ approach to two contrasting study sites that represent 

agricultural landscapes in different cultural settings. These examples of fine scale FLS based 170 

demonstrate both forecasting (US study site) and normative (French study site) agricultural 

intensification scenarios. In these sites, most of the land is cultivated and intensification results in 

an increased use of fertilizers combined with spatial extension and increased proportions of crops at 

the expense of grassland. This FLS framework aims to be independent of a specific scenario or 

landscape model approach. Most of FLS are driven by LUCC model capability so that explorative 175 

scenario-based studies are predominating in detriment of normative scenario-based studies and 

combined approaches. Moreover, FLS are often based on scenarios made previously and separately 

and then mapped using existing models. We claim that a more integrative work based on 

futurologists and landscape modellers’ practices would be more suitable to face models limitations 

and future uncertainties. This paper aims at providing a generic conceptual framework according to 180 

futurologists’ methods to landscape modellers, landscape ecologists and landscape planners to 

better integrate LULCC processes in futures exploration. To illustrate our purpose, we use two 

different scenario building and landscape modeling approaches on two contrasted study sites; 

forecasting scenarios are developed using the L1 dynamic landscape platform (Gaucherel et al. 

2006) in the US site, and normative scenarios are narrative coupled with multi-criteria GIS based 185 

maps in the French site. The results quantify possible future landscape changes and their 

uncertainty, and also their possible impacts on soil erosion and water quality. Finally, we discuss (i) 

the relevance of fine scale FLS framework to better understand subtle landscape changes in 

environmental assessments and (ii) opportunities for future improvements for fine scale FLS. 
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2. Fine scale FLS framework 190 

The proposed framework is based on la prospective approach, which is a way of thinking based on 

action and non-predetermination using specific methods such as scenarios. Its aim is not to predict 

the future but to transform exploratory and normative anticipation into action (Bain and Roubelat 

1994). Prospective scenarios are designed from a meta-method (Godet 1986) defined in three steps: 

(i) system analysis to answer the question “How is the system evolving, how has it evolved, and how 195 

is it functioning?”, (ii) definition of scenarios that establish assumptions for the future considering 

trends and actors’ strategies, and (iii) scenarios assessment in which future changes and knowledge 

brought by scenarios are evaluated.  

Based on the assumption that landscape ecology is an appropriate interdisciplinary approach to 

produce FLS (Hobbs 1997, Santelmann et al. 2004), we adapted this scenarios’ method in order to 200 

integrate landscape study techniques into their production. The proposed framework comprises four 

steps (Fig. 1). The first step involves selecting study site(s) with appropriate landscape 

representativeness. Step 2 concerns the analysis of the studied landscape as a system, including the 

identification of past, present, and future landscape trends, lands uses and driving forces. Detection 

of past landscape changes and land uses is commonly done using remotely sensed data and 205 

fieldwork. The identification of past and contemporary driving forces and land use practices 

influencing landscape changes (Burgi et al. 2004) is done using spatial analysis, which is often 

coupled with statistical and participatory approaches (Bousquet and Le Page 2004; Overmars et al. 

2007). Driving forces are defined as human activities and processes that cause land cover and 

landscape feature changes and which influence trajectories of landscapes. Driving forces influence 210 

land uses. Land uses are defined as land management practices related to production and 

maintenance (e.g. crops successions) that directly affect landscape changes. Future driving forces 

and causes of landscape changes are defined by considering trends, actors’ strategies, and 

environmental stakes. Step 3 consists of mapping scenarios. According to the identified stakes, 

including testing trends of land uses and decision maker involvement, the appropriate type of 215 
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scenario may vary. To be able to implement both forecasting and backcasting, scenarios must be 

defined before choosing an appropriate landscape modelling approach. Step 4 consists of 

monitoring landscape changes, which includes assessing environmental impacts and knowledge for 

decision makers. 

#Figure 1 approximately here# 220 

3. Materials and methods 

3.1. Study sites 

We built scenarios for two contrasting US and French study sites that experience agriculture 

intensification. The two sites are different in size (127 km² vs. 13 km²), agriculture production (cash 

grain crops vs. dairy productions), landscape (open field vs. bocage landscapes), and environmental 225 

issues (soil erosion vs. water pollution). The US study site is one of the three thousand random 

sample sites used in the U.S. Geological Survey (USGS) Land Cover Trends research project 

(Loveland et al. 2002). The ‘Menno block’ (Fig. 2a) is entirely contained within Hutchinson 

County, southeastern South Dakota, in the Northern Glaciated Plains Ecoregion (Omernik 1987). 

Cash crops production (corn and soybeans) is dominant, and livestock production is also important. 230 

The Menno block is a 10x10 km sample square; however the studied area is slightly larger (127 

km²) so that entire fields could be included in the study. In 2001, the dominant land cover classes 

were corn (32% of the whole area) and soybeans (28.5%). Hay (10%) and alfalfa (8.3%) are used 

for livestock production and to improve soil fertility. Natural grasslands are often used to pasture 

cattle. The French study site is located in the western part of France (Fig. 2b). The landscape of the 235 

Lestolet watershed has a dense hedgerow network with relatively small fields (1.4 ha mean size 

field in 1998). Dairy farms are the major type of agriculture. In 1998, the landscape was 

characterized by temporary grassland (44%), corn (17%), wheat (15%), fallow lands (13%), 

woodlands (5%), permanent grasslands (3%), a dense hedgerow network (123 m/ha), and large 

riparian wetlands (220 ha).  240 

#Figure 2 approximately here# 
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3.2. Description and analysis of land use changes  

Landscape trends were determined using aerial photographs and satellite images summarized in 

appendix 1. The Menno site experienced agricultural land use intensification after 1973.  This was 

characterized by the conversion of natural grassland to cropland (+3.5% in 1973-84; +2% in 1992-245 

2000). Additionally, small fields of natural grassland located in valley bottoms had changed to 

woodlands. Lestolet trends have been detailed in Houet and Gaucherel (2007) and show significant 

conversion of temporary grassland to cropland over the last 20 years (+5%), a large reduction of 

bocage density (-100m/ha), a slight decrease of riparian wetlands surface (-4%) in which severe 

grassland to fallow and wood land changes occurred (called hereafter ‘riparian landscape 250 

enclosure’) and field size enlargement over the last 50 years.  

#Appendix 1 approximately here#  

Driving forces were determined and ranked using several techniques: meeting with local actors 

(farmers, U.S. and French agricultural agents), interviews with experts, systematic analysis, and 

quantitative statistical and spatial analysis. Most of LULCC were derived and characterized in terms 255 

of conditions, direction, location, and quantity from land cover maps and GIS data (e.g. soil 

properties, farm land use), and participatory meetings.  

3.3. Scenarios assumptions and building approaches 

We developed three ‘agriculture intensification’ scenarios; two forecasting (Menno) and one 

backcasting (Lestolet) scenario (Table 1).  260 

US scenarios are part of an USGS research initiative and thus were defined by USGS scientists in 

collaboration with local agents. The US Northern Glaciated Plains ecoregion is affected by 

significant soil erosion. We defined scenarios to foresee what could be the consequences of 

agriculture intensification in Menno from 2000 to 2020. Two scenarios were made: a “business as 

usual” scenario (Sc1) based on the assumption that current practices and Corn Belt specialization 265 

continues; the second scenario (Sc2) is a higher intensity variation of Sc1. It is based on Sc1 but 

integrates no renewal of the federal Conservation Reserve Program (CRP), which consists of a 10 
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year contract to convert cropland to grassland or tree cover using practices that reduce soil erosion 

and improve biodiversity (Sullivan et al. 2004). CRP land accounts for 2.5% of the Menno block 

(USDA 2002).  270 

Agricultural land use intensification in Brittany over the last 30 years has caused water pollution. 

The scenario for the Lestolet was developed with decision makers, local stakeholders (farmers, 

water managers), and scientists to develop more efficient long-term water management. Hedgerow 

removals in Lestolet resulted in nitrogen concentrations that rose to 35 mg.l-1 in 2000 (Mérot 1999), 

riparian wetlands abandonment (Mérot et al. 2006), and changes in agricultural practices. 275 

Stakeholders recommended designing contrasted scenarios. Only one of the water quality scenarios 

is presented here. It aims to (i) facilitate understanding about what an intensively farm landscape 

that results in highly degraded water would look like in 2030? and (ii) how will this situation be 

reached? The scenario (Sc3) starts in 2005 and ends in 2030. It is based on plausible future states of 

landscape features such as hedgerows, riparian wetlands, and agricultural land covers. Hypotheses 280 

about future land management are consistent with each other and with agriculture intensification. 

These include (i) a massive removal of hedges on hill slopes and plateaus and the maintenance of 

hedges that surround valley bottom wetlands, (ii) an overall riparian wetlands landscape enclosure, 

and (iii) European policies that favour crop production (i.e. Common Agricultural Policy aid 

payments for major arable crops). Finally, Sc3 downscales regional, national, and European 285 

socioeconomic projections such as regional water management scenarios, regional agricultural 

demographic trends by 2015, and farm size projections for France by 2020.  Sc3 also integrates 

study site specificities including farm composition, production system, and future landscape 

assumptions. This scenario shows the strongest agriculture intensification in a set of backcasting 

and forecasting scenarios made for this study site (Houet and Hubert-Moy, 2008). 290 

Differences between scenarios in terms of agricultural context, type of landscape, size of study site, 

and environmental issues are essential to test the framework genericity within the scope of 



 12

agricultural intensification. Table 1 summarizes the scenarios’ approaches and techniques used for 

each study site. 

#Table 1 approximately here# 295 

3.4. Landscape modelling techniques to map scenarios 

Spatial rendering of US future landscape scenarios is based on a dynamic and spatially explicit 

modelling platform (L1) that mechanistically simulates landscape dynamics (Gaucherel et al. 2006). 

This platform was designed around a kernel, which provides a stable organizational data structure 

(storyboard, time steps…) and a generic landscape description: landscape processes applied on 300 

diversified landscape units and gathered in a coherent landscape mosaic. The L1 model works with 

various scales (land cover, farms, watershed) and intends to simulate the dynamics of elementary 

units of each scale (hedgerow, field, farm, etc). Units are polygons or lines represented in a raster 

mode GIS coverage. One of the main unique features of L1 is the allowance of attributive as well as 

geometrical actions. Attributive modification implies a change of the main unit property (e.g., land 305 

cover change), as in LULCC models, while geometrical modifications refer to unit deformations. In 

this study we only consider attributive modifications. The L1 model is somewhat different from 

usual agent-based models (ABM), as its ‘agents’ (the landscape patches) would not communicate 

between each other. Landscape patches are interacting through neighbouring and multi-level 

influences without any message exchange. L1’s ability to simulate plausible LULCC has been 310 

evaluated through several tests of sensitivity and the simulation of LULCC evolution over time 

(1981-1998) (Houet and Gaucherel 2007).  

Simulation of landscape changes is driven by sets of processes reproducing landscape changes that 

evolve yearly such as crop successions, land conversions, land acquisitions, etc., that may occur at 

the farm scale. Some of these processes may differ according to farm specificities (system of 315 

production, size, etc), land constraints (soil moisture, thickness, slope, etc), and agronomic 

constraints (compulsory crop successions, age/occurrences of land covers). Initially developed for a 

patchy French landscape, L1 has been adapted to simulate future LULCC in the Menno study site. 
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L1 simulates LULCC based on a ‘storyboard’ and at a single time-step defined by the user. This 

storyboard describes (i) which and when processes occur (every year, one specific year empirically 320 

and/or randomly chosen year) and (ii) how many times a process occurs within the chosen time 

step. In this study, the process of crop succession is used every year, the ‘CRP fields conversion 

into cropland’ process occurs in 2008, and mean soybean proportion rises up to 5% for all systems 

of production in 2010 according to scenarios 1 and 2. An assumption is made that all farmers adopt 

identical practices the same year to provide the most contrasted scenario. Then, L1 first simulates 325 

within each farm (Fig. 3c) inevitable crop successions and then randomly chooses stochastic crop 

successions (Fig. 3a) according to existing land constrains combined in a single physical 

environment suitability map (Fig. 3b) to reach the expected amount of crop proportions for the 

corresponding system of production (Table 2). The resulting map of the previous time-step is used 

as input for the next one. Crop successions and land constrains were identified from 2000-2001 330 

South Dakota crops maps, 2003-2004 digital orthorectified mosaic interpretations, interviews with 

farmers and USDA agents, and from Berg et al. (2002) and soil survey (USDA 1979, 1978). 

Agricultural land use data were obtained from farmer interviews. Only two thirds of land users were 

identified thus reducing the size of the study site (84.2 km²).  

#Table 2 approximately here# 335 

#Figure 3 approximately here# 

Spatial rendering of the backcasting scenario (Sc3) is based on a multi-criteria GIS based approach. 

Expected future changes were quantified for 2030 by mapping retained assumptions, and for 2015, 

assumptions were based on trends and the expected 2030 situation. Thus, based on the scenario and 

according to the expected number of farms and their system of production defined by local experts, 340 

expected land cover proportions were easy to derive from a GIS. Location of future landscape 

changes were randomly chosen but verified multi-criteria rules of land uses. Thus, no unique future 

existed but our experience has shown that no significant differences exist for possible images of the 

2030 landscape given the hypotheses retained. Figure 4 summarizes the multi-criteria land uses rule 
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set used to quantify and allocate future landscape changes for 2015 and 2030. For example, for 345 

dairy based production systems, hedgerows would be removed to reach expected lower hedgerow 

densities. Removal is more likely when hedgerows are located between two crop fields, and is 

likely when neighboured by one crop field if that field is located far from the farmstead. Exceptions 

are when hedgerows separate two farms, are neighbouring permanent grassland and are located 

beside roads or within riparian wetlands. 350 

#Figure 4 approximately here# 

3.5. Assessment of landscape changes and possible environmental impacts 

The objective for the assessment of forecasting scenarios is to localize and quantify future LULCC 

and measure uncertainty through computation of mean, minimum and maximum land cover 

proportions after simulation of fifty runs of Sc1 and Sc2. We then correlated these changes with the 355 

hazard of soil erosion. Considering corn as a land cover increasing soil erosion potential (Wilson et 

al. 2008), a simple corn occurrences indicator is computed and compared with plots of high erosive 

potential (USDA 1978, 1979). The backcasting scenario assessment was done (i) within the 

storyline through estimations based on literature and approved by experts, and (ii) by combining 

future landscape maps with water flux simulation models. We illustrated impacts on theoretical 360 

hydrograph peak water flows using the Ruicells model (Langlois and Delahaye 2002).  

4. Results 

In this section, we present Sc1 to Sc3, their implications on LULCC, and assessments of 

environmental impacts related to these scenarios. 

4.1. US land use intensification scenarios: future changes and environmental assessment 365 

In 2000, cash crop production was mainly dedicated to national market and bio-ethanol production 

(corn) and to international markets (soybean). Due to Brazilian soybean production penetration on 

the international market since 2005, US soybean production has become less attractive. In 2006, the 

international energy situation has prompted the US government to adopt new energy policies and to 

enhance biofuel production. Soybeans are particularly adapted to bio-diesel production allowing 370 
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farmers to preserve their soybean production until 2012 and even increase it after 2012. The main 

uncertainty exists surrounding the CRP. Sc1 assumes that farmers would keep lands enrolled in the 

CRP in grassland after the 1998-2008 program has ended. Because of the CRP, natural grassland 

proportion is stable and conversion to cropland has stopped. Indeed, social (hunting areas) and 

natural (biodiversity preservation) interests were predominant in farmers’ choices to maintain 375 

grasslands. Inversely in Sc2, most Midwest and Great Plains grasslands in the CRP will be affected 

by expected reductions of acres eligible for CRP participation. Priority eligibility will be for filter 

strips along perennial streams, urban watersheds, and areas with habitat needed by threatened 

species. In Sc2, Menno CRP fields are converted to cropland in 2008. Land use intensification 

results from technical advances: in 2010 crop successions stop depending on soil fertility, which 380 

allows farmers to increase their soybean proportion (up to 5%) to balance corn and soybean 

production. 

Results of Sc1 and Sc2 are presented in figure 5 and table 3 and respective simulations are available 

online (Appendix 2 and 3). They are analyzed over 6-7 year time periods and not from year to year 

in order to differentiate LULCC resulting from crop successions from those resulting from land use 385 

intensification. Between 2000 and 2006, mean crop proportions are similar for both scenarios. From 

2006 to 2020, the trend of land use intensification generates (Sc1) a mean increase of +2.9% corn 

(+244 ha) and +3.2% soybeans (+270 ha), mainly at the expense of hayfields (Tab. 3). Coupled 

with the end of the CRP in 2008 inducing 232 ha of natural grasslands converted to cropland (2.5% 

of the study site), land use intensification (Sc2) shows similar tendencies but proportions slightly 390 

differ: +3.4% corn and +4.7% soybeans (Tab.3). Computation of uncertainties (Fig 5) proves that 

trends of land cover changes for each scenario are distinguishable and not resulting from stochastic 

simulations. 

#Table 3 approximately here# 

#Figure 5 approximately here# 395 
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Sc1 shows a significant average amount of corn occurrences (corn every 2.1 years, Fig. 6a). Figure 

6b exhibits differences of mean values of corn occurrences between Sc1 and Sc2. White fields show 

no significant differences (<±1 occurrence). Small differences (< ±2 occurrences) result from 

stochastic crop successions. High differences (> ±2 occurrences) result from land use 

intensification. High positive values (> 4) concern farm fields where ‘CRP to cropland’ conversion 400 

occurred. Decreasing of corn occurrences is induced by cropland expansion engendering more 

possibilities for corn establishment. Yet, if directions of change (gain or loss of corn occurrences) 

are quantitatively nearly similar (respectively 801 ha and 760 ha), change intensity varies (Fig. 6c). 

High positive changes correspond to fewer CRP fields converted to cropland in 2008, which is 

balanced by slight decreasing corn occurrences on agricultural fields. Compared to fields exhibiting 405 

high erosion hazards (grey strip cross fields - Fig. 6b), land use intensification does not sensibly 

affect these fields. 

#Figure 6 approximately here# 

4.2. French land use intensification scenario: future changes and environmental assessment 

The new European Union (EU) CAP reform took place in November 2005. Farmers adapted to the 410 

amount of EU financial aid they will receive annually until 2013-2014. New CAP and international 

market strategies favour maintaining or increasing wheat proportions. In 2006, Lestolet was not 

recognized as a priority watershed by water managers compared to others. Between 2000 and 2007, 

a slight increase of wheat proportions (<5%) is observed: farmers ensure the collection of – most 

profitable – “wheat” EU aid but maintain enough corn and grassland proportions for dairy 415 

production. From 2005 to 2014, a third of farmers retired, leading to farm enlargement. Resumption 

of dairy quotas and lands favours intensification of existing production. LULCC are consistent with 

recent trends: proportions of crops increase to the detriment of temporary grassland, and only 

permanent grassland close to farmsteads remain. Hedgerow removals continue but do not include 

areas (i) located nearby farmsteads, (ii) beside grassland close to the farmstead, (iii) separating 420 
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fields with two different land uses, and (iv) surrounding riparian wetlands. After the oil crisis of 

2008 and 2010, production of biofuels becomes more widespread leading to significant increases of 

rapeseed (biodiesel), maize, and wheat (bioethanol). Grazing areas are slightly minimized by 

moving to confined animal feeding operation dairy production. In 2014, EU aids defined in the 

2006 CAP reform are not fundamentally challenged and are extended until 2022 thanks to pressure 425 

from France. Farmers of Lestolet remain sensitive to environmental concerns and seek to continue 

preferred practices as long as it is profitable. In 2014 (table 4, Fig. 7a), Lestolet exhibits 392 ha of 

temporary grasslands, 37 ha of permanent grassland, 307 ha of maize, and 300 ha of wheat. Bocage 

density detected from aerial photographs is 96 m/ha (9km removed, 28 km undistinguishable from 

woodlands plots). Riparian wetlands have not shrunk but are more closed with 31ha of permanent 430 

grassland, 57 ha of fallow land, and 132 ha of woodland in 2014. Nitrogen concentration is 40-45 

mg.L-1 and riparian wetlands enclosure provokes new phenomena of non permanent eutrophication. 

Theoretical flood hydrograph shows a peak (3.41 m3.s-1) higher than in 2005 (3.05 m3.s-1). 

In 2015, under pressure of the international community and with rising oil prices, EU allows the use 

of transgenic crops. Within 2 years, a network of agro-energy industries is being set up to absorb 435 

this massively adopted production. Wheat production is maintained to collect EU aid. Grasslands 

for grazing are limited in order to respect CAP principles for animal welfare. The two consecutive 

droughts in 2018 and 2019 persuade reluctant farmers to adopt genetically modified crops because 

they are much less affected. Farm enlargement leads to abandonment of nearly all riparian wetlands, 

to a rise in maize proportion, and to generalized confined animal feeding operations for dairy 440 

production. In 2030 (table 4, Fig. 7b), riparian wetlands are colonized by woodlands, and only 

permanent grasslands nearby farmsteads remain. Bocage is becoming inconvenient. Hedgerows 

have been gradually removed since 2015 except those located nearby farmsteads and meadows. 

Most of the arable lands are converted into crops (436 ha of maize, 356 ha of winter wheat / 

rapeseed) and remaining grasslands are located nearby farmsteads (204 of temporary and 22 ha of 445 

permanent grasslands). Bocage density is 64 m/ha: 27 km of hedgerows removed and 55 km 
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undistinguishable from woodlands since 2015. Riparian wetlands exhibit 22 ha of permanent 

grassland, 8 ha of fallow land, and 190 ha of woodlands. Nitrogen concentration regularly exceeds 

60 mg.l-1 and phosphorus concentration causes frequent eutrophication. The theoretical flood 

hydrograph shows a higher peak (4.01 m3.s-1) than in 2015. 450 

#Table 4 approximately here# 

#Figure 7 approximately here# 

5. Discussion & conclusion 

5.1. Subtle land use and land cover changes: location / frequency versus quantity? 

The FLS framework has been used to enhance subtle LULCC and their possible environmental 455 

impacts. In the case of the US site, we coupled a forecasting scenario and a spatially explicit and 

dynamic landscape model. The aim was to assess potential impacts of future LULCC based on trend 

scenarios, one integrating the end of the Conservation Reserve Program. Results show that a slight 

increase of crop proportions (e.g. +5% of soybean), which may appear quantitatively insignificant, 

has indirect consequences on other crops in terms of quantity, location, and frequency. Moreover, 460 

cumulated with unimportant land conversion to cropland (2.5%), trend scenarios involve 

approximately +3% of corn proportions with noticeable changes in terms of location and 

occurrences over the study time period. In this case, benefits of FLS come first from the model’s 

ability to compute uncertainties of LULCC and second from the long term approach that allows 

distinguishing LULCC trends from those inherited from stochastic crop successions. In the French 465 

case, we coupled a backcasting scenario and a multi-criteria GIS-based approach. The aim was to 

draw the worst possible future induced by agriculture intensification to evaluate its influence on 

water quality and fluxes, and to determine key triggers that lead to this undesirable situation. 

Results show that such a scenario can involve +2.5% of maize per year and -1.4m/ha/year of 

hedgerow density between 2000 and 2015, and +2.8% of maize per year and -2.2m/ha/year between 470 

2015 and 2030. Related to the US results, such LULCC are not to be only viewed in terms of 

quantity but also in terms of location and probable occurrences. Finally, it appears that agriculture 
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intensification is not automatically synonymous with conspicuous environmental damages (e.g. US 

scenarios). It strongly depends on local landscape configuration and farm mosaics, which highlight 

the relevance of such fine scale FLS.  475 

5.2. Discussion on the proposed FLS framework 

The reproducibility of the proposed framework has been tested and validated through the 

elaboration of fine scale FLS on two study sites that exhibit differences in size (factor 10), type of 

landscapes and agriculture, the use of forecasting/backcasting scenarios, and different landscape 

modelling techniques. This framework is neither scenario nor model dependent, and particularly 480 

adapted to fine scale FLS based on representativeness study sites (step 1 - Fig. 1). Dealing with high 

spatial and temporal resolution data, the framework contributes to identify the quantity, direction 

and magnitude of LULCC at fine scales (step 2 - Fig. 1). Identified LULCC are essential in 

participatory meetings to recognize driving forces and identify stakes to be enhanced through future 

studies. The scenario building approach (step 3 - Fig. 1) depends on the stakes that are involved. 485 

Whatever the forecasting or backcasting building approach chosen, scenarios which are created first 

must provide all the required information to run the models. The choice of model depends on the 

type of landscape, the land uses, and land cover change processes. Thus, cellular automata or ABM 

can be used if they are appropriate. Integration of feedback effects mostly depends on model ability. 

The resulting maps constitute essential inputs for environmental models or indices to assess 490 

possible future impacts of LULCC (step 4 - Fig. 1). This framework contributes to better integrate 

local specificities (context, land uses and land cover change processes, driving forces) in future 

LULCC scenario-based studies and quantitatively assess impacts of future landscape changes, but 

strongly depends on data availability (e.g. farmland maps). For example, it should permit to avoid 

the use of model (in step 3) that would not be appropriate to model previously identified in step 2 495 

specific LULCC. Its genericity based on the described four steps does not limit its application to 

subtle LULC changes. It should theoretically be adapted for fine scale FLS dealing with land 

conversion (deforestation, urban sprawl, etc). We also feel that this framework can contribute to 
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downscale regional/national future landscape studies. We encourage investigating this issues. 

Finally, this framework is somewhat not so different from the ‘Story-and-Simulation’ approach 500 

introduced by Alcamo (2001) and founds its methodological basement from futures and landscape 

studies. 

5.3. Future improvements for landscape modelling 

The main emphasis of this research was to couple a generic method of future studies (Godet 1986) 

and landscape dynamics modelling and analysis techniques to propose a framework to foresee fine 505 

scale landscape possible futures. These techniques are dedicated (i) to render spatially explicitly 

landscape dynamics and (ii) to assess environmental impacts of landscape changes with spatial 

indicators and/or spatially explicit models. The framework genericity comes from various methods 

and techniques that can be used in step two and three (Fig. 1) which could be largely improved 

according to the challenges of current LULCC modelling. One of these challenges is to simulate 510 

fine scale LULCC. The L1 platform (Gaucherel et al. 2006) has been chosen for its ability to model 

land use processes in the US study site. However, L1 could be improved: (ii) by coupling an ABM 

to model farmers’ decisions to avoid empirical decisions modelling. This would allow scenarios to 

be more plausible and helpful to improve LULCC mid-term prediction. In our case, it is not binding 

because the aim is to foresee the most contrasted landscape futures; (iii) by integrating interactions 515 

with global driving forces. More generally, whatever model is used, it has to be able to simulate 

land uses as well as landscape feature dynamics. This goal could be achieved by refining landscape 

pattern rendering of ‘top-down’ / pattern-based models (Sohl et al. 2007), by coupling the ‘top-

down’ and ‘bottom-up’ approaches (Castella and Verburg 2007), or by modelling multi-scale 

interactions of human and natural LULCC driving forces (Verburg et al. 2006a,b). An additional 520 

challenge is to improve landscape modelling techniques in order to produce dynamic backcasting 

scenarios respecting different organisational levels and land use. In the US example, we used a 

simple synchronic multi-criteria GIS, but optimization models (Seppelt and Voinov 2002) could be 

investigated as well. This is reinforced by the unbalanced forecasting / backcasting studies ratio 
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induced by large development of dynamic landscape models. Both fine scale forecasting / 525 

backcasting scenario approaches are complementary and could inspire decision makers to look 

beyond the existing landscape and envision greater possibilities (Santelmann et al. 2004) to 

challenge prediction of ‘location versus quantity of LULCC’ (Veldkamp and Lambin 2001). 
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Figure captions 

Figure 1: Framework to forecast fine scale landscape futures based on forecasting or backcasting 

scenarios (adapted from Godet, 1986) 700 

Figure 2: US and French study sites – (a) US study site -the Menno block- location and the 2000 

land cover map (Trends research project, Loveland et al. 2002) – (b) French study site -the Lestolet- 

location and the 1998 land cover map. 

Figure 3: US study site (a) identified crop successions for inventoried systems of production, (b) 

Physical Environment Suitability Map –PESM– and (c) land users map used as input in L1 705 

modelling platform to simulate future land use and land cover changes based on forecasting 

scenarios. 

Figure 4: GIS multicriteria rule set of land uses employed to map plausible landscape future states 

in 2015 and 2030 on the French study site based on backcasting scenario. 

Figure 5: Evolution of land cover proportions for scenario 1 (dashed line) and scenario 2 (plain 710 

line) between 2000 and 2020 on the US study site for one simulation. Uncertainties for respective 

land cover proportions have been computed from 50 simulations.  

Figure 6: Detection of corn occurrences for scenarios 1 and 2: (a) number of corn occurrences for 

scenario 1; (b) mean values of change detection between scenarios 1 and 2 for 50 simulations (c) 

surfaces (in ha) of corresponding mean values. 715 

Figure 7: Land cover maps for scenario 3 in (a) 2015 and (b) 2030.  
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Table 1: Synthesis of the three agricultural intensification scenarios elaborated with the fine scale 

FLS framework and associated techniques/approaches. 

 SCENARIO 1 SCENARIO 2 SCENARIO 3 

Study site Menno block (USA) Lestolet (France) 

Agricultural intensification 

assumptions 

Trend 

(+5% soybean) 

Trend 

(+5% soybean) + 

End of Conservation 

Reserve Program 

Crop maximization 

Wetland abandonment 

Massive hedgerow 

removals 

Environmental stake Soil erosion Water management 

Scenario building approach Forecasting Backcasting 

Scenario rendering Narrative + Simulation Narrative 

Landscape modelling technique Dynamic and spatially explicit model (L1) 
GIS / multicriteria 

queries 

Landscape changes 
Land cover maps 

Statistics (based on 50 simulations) 

Land cover maps 

Expert knowledge 

Environmental assessment 

techniques 
Maps of corn occurrences 

Spatially explicit 

water flow model 

(Ruicell) 

Expert knowledge 

 



 

 

Table 2: Systems of production and corresponding mean annual crops proportions (US site) 5 

INVENTORIED SYSTEMS OF PRODUCTION

ANNUAL MEAN CROP PROPORTIONS (%) 

Corn Soybean Alfalfa Hay Wheat Nat. grassland

Type 1: Cash crops production 55 40 - 5 -  

Type 2: Cash crops + livestock (hog) 50 40 10 -  

Type 3: Diversified production 50 40 - 10  

Type 4: Cash crops + livestock (beef) 50 40 - 10 -  

Type 5: Livestock (beef) production - - - - - 100 

 



 

 

Table 3: Evolution of land cover proportions over the studied time frame periods 
 

TIME FRAME 

PERIOD 

SCENARIO 1 (%) SCENARIO 2 (%) 

2000-2006 

Corn: 

Soybean: 

Alfalfa: 

Wheat 

Hay/pasture:

25.5 ± 3 

30.7 ± 3 

6.6 ± 0.9 

0.1 

7.2 ± 0.7 

2007-2014 

Corn 

Soybean 

Alfalfa 

Wheat 

Hay/pasture 

26.2± 3.1 

32.6± 3 

5.9± 0.9 

0.1 

5.2± 0.7 

Corn 

Soybean 

Alfalfa 

Wheat 

Hay/pasture

26.8± 2.9 

33.5 ± 3 

6.2± 0.9 

0.1 

5.8± 0.8 

2014-2020 

Corn 

Soybean 

Alfalfa 

Wheat 

Hay/pasture 

28.6± 3.4 

33.8± 3.1 

5.1± 0.9 

0.1 

2.6± 0.8 

Corn 

Soybean 

Alfalfa 

Wheat 

Hay/pasture

30.1± 3.3 

34± 3 

5.6± 0.9 

0.1 

2.9± 0.8 
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Table 4: Synthesis of landscape dynamics and environmental assessment based on scenario 3 (French site) 
 

SCENARIO 

(SC3) 

LAND COVER SURFACES (HA) 
EUTROPHICATION 

PHENOMENA1 

RIPARIAN 

WETLAND 

ENCLOSURE2 (%) 

HEDGEROW 

DENSITY 

(M/HA)3 

NITROGEN 

CONCENTRATION1 

(MG.L-1) 

THEORETICAL 

WATER PEAK FLOW4 

(M3.S-1) 
TG M Wh PG FL Wd

1981 711 211 159 135 57 28 None 38 146 ? ? 

20005 578 224 200 40 123 57 None 81 123 35 3.05 

2015 392 307 300 37 57 132 Irregular 87 96 40-45 3.41 

2030 204 436 356 22 8 190 Frequent 90 64 >60 4.01 

? = unknown values 
TG: Temporary Grassland, M: Maize, Wh: Wheat,  
PG: Permanent Grassland, FL: Fallow Land, Wd: woodland 15 
1 Estimated from literature and expert knowledge 
2 Proportion of riparian wetlands covered by fallow and wood that lead to landscape enclosure estimated from derived from land cover maps 
3 Hedgerow density computed from aerial photographs and estimated so that undistinguishable hedgerows surrounding woodland plots are not accounted 
4 Theoritical water peak flow computed from coupling land cover maps and the spatially explicit model Ruicells (Langlois and Delahaye 2002) 
5 Situation in 2000 is assimilated to situation in 1998 20 



 

 

Appendix 1: Remotely sensed data used for trends / land use identification on US and French study 
sites 
 
 US study site French study site 

Remotely 
sensed data 

USDA-FSA-APFO Digital Ortho Mosaic 
04/22/1998, 08/02/2003, 08/08/2004 
Landsat MSS – 08/28/1973 
Landsat TM – 08/29/1984, 08/17/1991, 
08/09/1993 
Landsat ETM+ – 06/30/2000, 10/20/2000 

IGN Aerial photographs – 05/23/1952, 
05/16/1966, 08/18/1981,  
IGN Digital ortho mosaic 08/08/1998 
SPOT 2 HRV – 12/29/1996, 01/24/2001, 
08/15/1997 
IRS-LISS 1D – 03/16/1999 
IRS-LISS 1C – 12/13/1997, 03/08/2000 
SPOT 4 HRVIR – 12/17/2001 
SPOT 5 HRVIR – 09/13/2002 
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