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Abstract All known algorithms for the Fréchet distance between curves proceed in

two steps: first, they construct an efficient oracle for the decision version; second, they

use this oracle to find the optimum from a finite set of critical values. We present a

novel approach that avoids the detour through the decision version. This gives the

first quadratic time algorithm for the Fréchet distance between polygonal curves in

R
d under polyhedral distance functions (e.g., L1 and L∞). We also get a (1 + ε)-

approximation of the Fréchet distance under the Euclidean metric, in quadratic time

for any fixed ε > 0. For the exact Euclidean case, our framework currently yields

an algorithm with running time O(n2 log2 n). However, we conjecture that it may

eventually lead to a faster exact algorithm.
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1 Introduction

Measuring the similarity of curves is a classic problem in computational geometry.

For example, it is used for map-matching tracking data [3,20] and moving objects

analysis [8,9]. In these applications, it is important to take the continuity of the curves

into account. Therefore, the Fréchet distance and its variants are popular metrics to

quantify (dis)similarity. The Fréchet distance between two curves is obtained by taking

a homeomorphism between the curves that minimizes the maximum pairwise distance.

It is commonly explained through the leash-metaphor: a man walks on one curve, his

dog walks on the other curve. Man and dog are connected by a leash. Both can vary

their speeds, but they may not walk backwards. The Fréchet distance is the length of

the shortest leash so that man and dog can walk from the beginning to the end of the

respective curves.

Related work. The algorithmic study of the Fréchet distance was initiated by Alt and

Godau [1]. They gave an algorithm to solve the decision version for polygonal curves

in O(n2) time, and then used parametric search to find the optimum in O(n2 log n)

time, for two polygonal curves of complexity n. The method by Alt and Godau is very

general and also applies to polyhedral distance functions. To avoid the need for para-

metric search, several randomized algorithms have been proposed that are based on the

decision algorithm combined with random sampling of critical values, one running in

O(n2 log2 n) time [13], the other in O(n2 log n) time [16]. Recently, Buchin et al. [10]

showed how to solve the decision version in subquadratic time, resulting in a random-

ized algorithm for computing the Fréchet distance in O(n2 log1/2 n log log3/2 n) time.

In terms of the leash-metaphor, these algorithms simply give several leashes to the

man and his dog to try if a walk is possible. By a clever choice of leash-lengths, one then

finds the Fréchet distance efficiently. Since no substantially subquadratic algorithm

for the problem is known, several faster approximation algorithms have been proposed

(e.g. [2,15]). However, these require various assumptions of the input curves; previous

to our work, there was no approximation algorithm that for the general case runs faster

than known exact algorithms. Recently, Bringmann [4] showed that, unless the Strong

Exponential Time Hypothesis (SETH) fails, no general-case O(n2−α) algorithm can

exist to approximate the Fréchet distance within a factor of 1.001, for any α > 0. The

lower bound on the approximation factor was later improved to 1.399, even for the

one-dimensional discrete case [5]. Subsequent to our work, Bringmann and Mulzer

showed that a very simple greedy algorithm yields an approximation factor of 2O(n)

in linear time [5]. This leaves us with a gap between the known algorithms and lower

bounds for computing and approximating the Fréchet distance.

Contribution. We present a novel framework for computing the Fréchet distance, one

that does not rely on the decision problem. Instead, we give the man a “retractable
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leash” that can be lengthened or shortened as required. To this end, we consider

monotone paths on the distance terrain, a generalization of the free space diagram

typically used for the decision problem. Similar concepts have been studied before,

but without the monotonicity requirement (e.g., path planning with height restrictions

on terrains [14] or the weak Fréchet distance [1]).

We present the core ideas for our approach in Sect. 2. The framework provides a

choice of the distance function δ that is used to measure the distance between points

on the curves. However, it requires an implementation of a certain data structure that

depends on δ. We apply our framework to polyhedral distances (Sect. 3), to show

that under such metrics, the Fréchet distance is computable in quadratic time. To the

best of our knowledge, there is no previous method for this case that is faster than

the classic Alt-Godau algorithm with running time O(mn log n) [1]. Our polyhedral

implementation can be used to obtain a (1 + ε)-approximation for the Euclidean

case (Sect. 4). This leads to an O(mn(d + log 1
ε
))-time algorithm, giving the first

approximation algorithm that runs faster than known exact algorithms for the general

case. Moreover, as shown by Bringmann [4], our result is tight up to subpolynomial

factors, assuming SETH. Finally, we apply our framework to the Euclidean distance

(Sect. 5), to show that using this approach, we can compute the Fréchet distance in

O(mn(d + log2 m + log2 n)) time for two d-dimensional curves of complexity m and

n. We conclude with two open problems in Sect. 6.

2 Framework

2.1 Preliminaries

Curves and distances. Consider a curve P in a d-dimensional space. We denote the

vertices of P by p0, . . . , pm ; its complexity (number of edges) is m. We treat a curve

as a piecewise-linear function P : [0, m] → R
d . That is, P(i +λ) = (1−λ)pi +λpi+1

holds for any integer i ∈ {0, . . . , m − 1} and λ ∈ [0, 1]. Similarly, we are given a

curve Q : [0, n] → R
d with complexity n; its vertices are denoted by q0, . . . , qn .

Let Ψ be the set of all orientation-preserving homeomorphisms, i.e., continuous

and nondecreasing functions ψ : [0, m] → [0, n] with ψ(0) = 0 and ψ(m) = n. Then

the Fréchet distance is defined as

dF(P, Q) = inf
ψ∈Ψ

max
t∈[0,m]

{
δ
(
P(t), Q(ψ(t))

)}
.

Here, δ may be any distance function on R
d . Here, we shall consider polyhedral

distance functions (Sect. 3) and the more typical case of the Euclidean distance function

(Sect. 5). For our framework, we require that δ is convex. That is, the locus of all points

with distance at most one to the origin forms a convex set in R
d .

Distance terrain. Consider the joint parameter space R = [0, m] × [0, n] of P and

Q. A pair (s, t) ∈ R corresponds to the points P(s) and Q(t), and the distance

function δ assigns a distance δ(P(s), Q(t)) to (s, t). We interpret this distance as the

“height” at point (s, t) ∈ R. This gives a distance terrain T , i.e., T : R → R with
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Fig. 1 Illustration of a distance terrain with the Euclidean distance in R
2. Left: two curves. Middle: cells

as seen from above. Dark colors indicate low “height”. Right: perspective view

T (s, t) = δ(P(s), Q(t)). We partition T into mn cells based on the vertices of P and

Q. For integers i ∈ {0, . . . , m − 1} and j ∈ {0, . . . , n − 1}, the cell Ci, j is defined as

the subset [i, i + 1] × [ j, j + 1] of the parameter space R. The cells form a regular

grid, where i represents the column and j the row of a cell. The sides of Ci, j are

the four line segments [i, i + 1] × { j}, [i, i + 1] × { j + 1}, {i} × [ j, j + 1], and

{i + 1} × [ j, j + 1]; the boundary of Ci, j is the union of its sides. An example of two

curves and their distance terrain is given in Fig. 1.

A path π : [0, 1] → R is bimonotone if it is both x- and y-monotone, i.e., every

horizontal and vertical line intersects π in at most one connected component. For

(s, t) ∈ R, we let Π(s, t) be the set of all bimonotone continuous paths from the

origin to (s, t). The acrophobia function T̃ : R → R is defined as

T̃ (s, t) = inf
π∈Π(s,t)

max
λ∈[0,1]

T (π(λ)).

Intuitively, T̃ (s, t) represents the lowest height that an acrophobic (and somewhat neu-

rotic) climber needs to master in order to reach (s, t) from the origin on a bimonotone

path through the distance terrain T . A bimonotone path from (0, 0) to (m, n) corre-

sponds to a homeomorphism: we have dF(P, Q) = T̃ (m, n).

Let x ∈ R and π ∈ Π(x) be a bimonotone path from the origin to x . Let ε ≥ 0.

We call π an ε-witness for x if

max
λ∈[0,1]

T (π(λ)) ≤ ε.

For ε = T̃ (x), we call π simply a witness: π is then an optimal path for the acrophobic

climber.

Algorithm strategy. Due to the convexity of the distance function, we need to consider

only the boundaries of cells of the distance terrain. It seems natural to propagate

through the terrain for any point on a cell side the minimal “height” (leash length) ε

required to reach that point. However, this may entail an amortized linear number of

changes when moving from one cell to the next, giving a cubic-time lower bound for

such an approach. We therefore do not maintain these functions explicitly. Instead, we
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maintain sufficient information to compute the lowest ε for a side. A single pass over

the terrain then finds the minimum ε for reaching the other end, giving the Fréchet

distance.

More specifically, we show that as we move through a row j of the distance terrain

from left to right, the witnesses for the minimum values of the acrophobia function on

the vertical boundaries exhibit a certain monotonicity property: if a witness for the i-th

vertical boundary enters row j in column a, then there is a witness for the (i + 1)-th

vertical boundary that enters row j in column a or to the right of column a. Thus, if

we know that the “rightmost” witness for the i-th vertical boundary enters row j in

column a, it suffices to consider only witnesses that enter in columns a, a+1, . . . , i+1.

Furthermore, we can narrow down the set of candidate columns further by observing

that it is enough to restrict our attention to those columns for which the minimum

value of the acrophobia function on the bottom boundary is smaller than for all bottom

boundaries to the right of it, up to i + 1 (otherwise, we could find an equally good

witness further to the right). Now, all we need is an efficient way to decide whether for

a given candidate column, there actually exists an optimum witness for the (i + 1)-th

vertical boundary that enters row j through this column. For this, we describe witness

envelopes, a data structure that allows us to characterize an optimum witness that

enters row j in a given column. Furthermore, we show that these witness envelopes

can be maintained efficiently, assuming that an appropriate data structure for dynamic

upper envelopes is available. Putting everything together, and proceeding analogously

for the columns of the distance terrain, we obtain a new algorithm for the Fréchet

distance.

2.2 Analysis of the Distance Terrain

The Fréchet distance corresponds to the acrophobia function T̃ on the distance terrain.

To compute T̃ (m, n), we show that it suffices to consider the cell boundaries. For this,

we generalize the fact that cells of the free space diagram are convex [1] to the distance

terrain for convex distance functions.

Lemma 2.1 Let ε ≥ 0, and suppose that δ is a convex distance function. For every

cell C, the set of all points (s, t) ∈ C with T (s, t) ≤ ε is convex.

Proof The cell C represents the parameter space of two line segments in R
d . Let ℓP (s)

and ℓQ(t) be the parameterized lines spanned by these line segments. Both ℓP and ℓQ

are affine maps. Consider the map f : R
2 → R

d defined by f (s, t) = ℓP (s) − ℓQ(t).

Being a linear combination of affine maps, f is affine. Set Dε ={z ∈R
d | δ(0, z)≤ε}.

Since δ is convex, Dε is convex. Let E = f −1(Dε). Since the affine preimage of a

convex set is convex, E is convex. Thus, C ∩ E , the subset (s, t) ∈ C with T (s, t) ≤ ε,

is convex, as it is the intersection of two convex sets. ⊓⊔

Lemma 2.1 has two important consequences. First, it shows that it is indeed enough

to focus on cell boundaries. Second, it tells us that the distance terrain along each side

is unimodal, that is, it has a single local minimum.
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Corollary 2.2 Let C be a cell of the distance terrain, and x1 and x2 two points

on different sides of C. For any y on the line segment x1x2, we have T (y) ≤
max{T (x1), T (x2)}.

Corollary 2.3 Let C be a cell of the distance terrain. The restriction of T to any side

of C is unimodal.

We denote by L i, j and Bi, j the left and bottom side of the cell Ci, j (and, by slight

abuse of notation, also the restriction of T to the side). The right and top side are given

by L i+1, j and Bi, j+1.1 With L̃ i, j and B̃i, j we denote the acrophobia function along

the corresponding side. All these restricted functions depend on a single parameter

α ∈ [0, 1] in the natural way, i.e., L i, j (α) = T (i, j + α), Bi, j (α) = T (i + α, j),

etc. Assuming that the distance function δ is symmetric, computing values for rows

and columns of T is symmetric as well. Hence, we present only how to compute with

rows. If δ is asymmetric, our methods still work, but some extra care needs to be taken

when computing distances. In the following, we fix a row j , and we write Ci as a

shorthand for Ci, j , L i for L i, j , etc.

Consider a vertical side L i . We write L̃∗
i for the minimum of the acrophobia function

L̃ i along L i , and similarly for horizontal sides. Our goal is to compute L̃∗
i and B̃∗

i for

all cell boundaries. We say that an ε-witness π passes through a side Bi if there is a

λ ∈ [0, 1] with π(λ) ∈ Bi .

Lemma 2.4 Let ε > 0, and x a point on L i . Let π be an ε-witness for x that passes

through Ba , for some a ∈ {0, . . . , i − 1}. Suppose there is a column b ∈ {a + 1, . . . ,

i − 1} with B̃∗
b ≤ ε. Then there exists an ε-witness for x that passes through Bb.

Proof Let y be a point on Bb that achieves B̃∗
b , and πy a witness for y. Since π

is bimonotone and passes through Ba , it must also pass through Lb+1. Let z be the

(lowest) intersection point of π and Lb+1, and πz the subpath of π from z to x . Let π ′ be

the path obtained by concatenating πy , the line segment yz, and πz . By our assumption

on ε and by Corollary 2.2, path π ′ is an ε-witness for x that passes through Bb; see

Fig. 2. ⊓⊔

Lemma 2.4 implies that any point x ∈ L i has a rightmost witness π with the

property that if π passes through the bottom side Ba , for some a < i , then the

acrophobia function on all later bottom sides is strictly greater than the acrophobia

optimum at x .

Corollary 2.5 Let x be a point on L i . There is a witness π for x with the following

property: if π passes through the bottom side Ba , then B̃∗
b > T̃ (x), for all b ∈

{a + 1, . . . , i − 1}.

Next, we argue that there is a witness for L̃∗
i+1 that enters row j at or after the bottom

side used by the witness for L̃∗
i . That is, the rightmost witnesses behave “monotoni-

cally” in the terrain.

1 Note that there need not be an actual cell Ci+1, j or Ci, j+1.
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π

πy

πz

y
z

ba

j

i

x

Fig. 2 Suppose x ∈ L i has an ε-witness that passes through Ba , and B̃∗
b

≤ ε for some a < b < i . Then,

x has an ε-witness that passes through Bb

Lemma 2.6 Let π be a witness for L̃∗
i that passes through Ba , for some a ∈ {0, . . . ,

i − 1}. Then L̃∗
i+1 has a witness that passes through Bb, for some b ∈ {a, . . . , i}.

Proof Choose b maximum so that L̃∗
i+1 has a witness π ′ that passes through Bb.

If b ≥ a, we are done, so assume b < a. Since π ′ must pass through L i , we get

L̃∗
i+1 ≥ L̃∗

i ≥ B̃∗
a . Lemma 2.4 now gives a witness for L̃∗

i+1 that passes through Ba ,

despite the choice of b. ⊓⊔

We now characterize L̃ i through a witness envelope. Fix i ∈ {1, . . . , m}. Suppose

L̃∗
i−1 has a witness that passes through Ba′ . Fix a second column a ∈ {a′, . . . , i − 1}.

We are interested in the best witness for L i that passes through Ba . The witness

envelope is a function Ea,i : [0, 1] → R. The witnesses must pass through Ba and

L i−1 (if a < i − 1), and they end on L i . Hence,

Ea,i (λ) ≥ max{B̃∗
a , L̃∗

i−1, L i (λ)}.

However, this is not enough to exactly characterize the best witnesses for L i through

Ba . To this end, we introduce truncated terrain functions Lb(λ) = minμ∈[0,λ] Lb(μ),

for b ∈ {a + 1, . . . , i − 1}. Since Lb is unimodal, Lb represents the decreasing part

until the minimum, remaining constant afterwards. Therefore,

Ea,i (λ) ≥ Lb(λ),

for all b = a + 1, . . . , i − 1. The reason for truncating the function is as follows: to

reach L i (λ), we must cross all Lb below y-coordinate j + λ. If we pass Lb below the

position where the minimum is attained, the height Lb may force a higher value for the

acrophobia function. However, the increasing part of Lb does not matter, because we

could just pass Lb closer to the minimum. This intuition is not quite accurate, since

we need to account for the order of the increasing parts to ensure bimonotonicity.

However, we prove below that due to the witness for L̃∗
i−1 through Ba′ , this is not a

problem. Thus, the witness envelope for the column interval {a, . . . , i} in row j is the

upper envelope of the following functions on the interval [0, 1]:
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Fig. 3 A witness envelope for

a = i − 3. It is the upper

envelope of two constant

functions, one (untruncated)

terrain function, and two

truncated terrain functions
L i

L̃ ∗

i − 1

B̃∗

a

L i − 1

L i − 2

(i) the terrain function L i (λ);

(ii) the constant function B̃∗
a ;

(iii) the constant function L̃∗
i−1, if a ≤ i − 2; and

(iv) the truncated terrain functions Lb(λ), for all b = a + 1, . . . , i − 1.

See Fig. 3 for an example. We prove with the following lemma that the witness

envelope exactly characterizes L̃ i for witnesses that pass through Ba .

Lemma 2.7 Fix a row j and a two columns a′, i with a′ ≤ i − 1. Suppose that L̃∗
i−1

has a witness πi−1 that passes through Ba′ . Let a ∈ {a′, . . . , i − 1}, α ∈ [0, 1], and

ε > 0. The point x = (i, j + α) has an ε-witness that passes through Ba if and only

if ε ≥ Ea,i (α).

Proof Letπ be an ε-witness for x that passes through Ba . Then, ε ≥ B̃∗
a and ε ≥ L i (α).

If a ≤ i − 2, then π must pass through L i−1, so ε ≥ L̃∗
i−1. Since π is bimonotone, it

has to pass through Lb for a <b < i . Let y1 = (a+1, j + α1), y2 = (a + 2, j + α2),

. . . , yk = (a + k, j + αk) be the points of intersection, from left to right. Then,

α1 ≤ α2 ≤ · · · ≤ αk ≤ α and ε ≥ T (yl) = La+l(αi ) ≥ La+l(α), for all l = 1, . . . , k.

Hence, ε ≥ Ea,i (α).

Now suppose that ε ≥ Ea,i (α). The conclusion is immediate for a = i − 1.

Otherwise, we have ε ≥ L̃∗
i−1. Let α′ be such that the witness πi−1 for L̃∗

i−1 reaches

L i−1 at point (i − 1, j + α′). There are two cases. First, if α ≥ α′, we can find

an appropriate ε-witness π ′ for x by following the witness for B̃∗
a , passing to πi−1,

following πi−1 to L̃∗
i−1, and then taking the line segment to x . Second, if α < α′, we

construct a curve π ′ as before. However, π ′ is not bimonotone (the last line segment

goes down). This is fixed as follows: let p and x be the two intersection points of π ′

with the horizontal line y = j +α. We shortcut π ′ at the line segment px as illustrated

in Fig. 4. The resulting curve π is bimonotone and passes through Ba . To see that π

is an ε-witness, it suffices to check that along the segment px , the distance terrain

never goes above ε. For this, we need to consider only the intersections of px with

the vertical sides. Let Lb be such a side. The function Lb is unimodal; let α∗ be the

value where the minimum of Lb is obtained. We distinguish two cases to argue that

ε ≥ Lb(α) and to prove the lemma:
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a

j

i

xp

π
′

ππi −1

Fig. 4 To construct π ′, we combine the witness for B̃∗
a , the witness πi−1, and the segment from L̃∗

i−1 to

x . By assumption, πi−1 enters row j at or to the left of Ba . If α < α′, then π ′ is not bimonotone, and we

shortcut with segment px (dotted) to obtain π

1. α ≤ α∗: by definition of truncated terrain functions, Lb(β) = Lb(β), for all

β ∈ [0, α∗]. Hence, we know that ε ≥ Lb(α) holds trivially by our assumption of

ε ≥ Ea,i (α) and the fact that Lb is part of the witness envelope.

2. α ≥ α∗: by construction, the witness πi−1 passes Lb at α or higher. Hence,

L̃∗
i−1 ≥ Lb(α) holds as Lb(α) is on the increasing part of Lb. It follows that

max{Lb(α), L̃∗
i−1} ≥ Lb(α). Since ε ≥ Ea,i (α) ≥ max{Lb(α), L̃∗

i−1}, we have

ε ≥ Lb(α), as desired.

Thus, π passes through Ba and is an ε-witness for x . ⊓⊔

2.3 Algorithm

We are now ready to present the algorithm. We walk through the distance terrain,

row by row, in each row from left to right. When processing a cell Ci, j , we compute

L̃∗
i+1, j and B̃∗

i, j+1. For each row j , we maintain a double-ended queue (deque) Q j that

stores a sequence of column indices. We also store a data structure U j that contains

a set of (truncated) terrain functions on the vertical sides in row j . The structure

U j supports insertion, deletion, and a minimum-point query that returns the lowest

point on the upper envelope of the terrain functions. In other words, U j implicitly

represents a witness envelope, apart from the constant functions B̃∗
a and L̃∗

i−1. The

implementation of U j depends on the distance function δ: in Sect. 3, we describe

the data structure for polyhedral distance functions, and in Sect. 5, we consider the

Euclidean case.

The algorithm is given in Algorithm 1. It proceeds as follows: since all witnesses

start at (0, 0), we initialize C0,0 to use (0, 0) as its lowest point and compute the distance

accordingly. The left- and bottommost sides of the distance terrain are considered

unreachable.

In the body of the for-loop, we compute L̃∗
i+1, j and B̃∗

i, j+1. Let us describe how

to find L̃∗
i+1, j . First, we remove all indices from the back of the Q j that have an
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Algorithm 1 FrechetDistance(P, Q, δ)

Input: P and Q are polygonal curves with m and n edges in R
d ;

δ is a convex distance function in R
d

Output: Fréchet distance dF(P, Q) for δ

{We show computations only within a row, column computations are analogous}

1: L̃∗
0,0 ← δ(P(0), Q(0))

2: L̃∗
0, j

← ∞ for all j = 1, . . . , n − 1

3: For each row j , create empty deque Q j and upper envelope structure U j

4: for j ← 0 to n − 1; i ← 0 to m − 1 do

5: Remove all values x from Q j with B̃∗
x, j

≥ B̃∗
i, j

and append i to Q j

6: if |Q j | = 1 then

7: Clear U j

8: Add L i+1, j to U j

9: Let h and h′ be the first and second element in Q j

10: (α, εα) ← U j .minimumQuery()

11: εα ← max{εα, L̃∗
i, j

, B̃∗
h, j

}
12: while |Q j | ≥ 2 and B̃∗

h′, j
≤ εα do

13: Remove all Lx, j from U j with x ≤ h′

14: Remove the head h from Q j

15: Let h and h′ be the first and second element in Q j

16: (α, εα) ← U j .minimumQuery()

17: εα ← max{εα, L̃∗
i, j

, B̃∗
h, j

}
18: L̃∗

i+1, j
← εα

19: Update L i+1, j to L i+1, j in U j

20: return max{δ(P(m), Q(n)), min{L̃∗
m−1,n−1, B̃∗

m−1,n−1}}

acrophobia optimum on the bottom side that is at least B̃∗
i, j , and we append i to Q j .

We also add L i+1, j to the upper envelope U j . Let h and h′ be the first two elements

of Q j . We perform a minimum query on the witness envelope, combining the result

with two constants L̃∗
i, j and B̃∗

h, j , in order to find the smallest εα for which a point on

L i+1, j has an εα-witness that passes through Bh, j . Note that L̃∗
i, j should be included

as a constant only if h < i , i.e., if |Q j | ≥ 2; for simplicity, we omit this detail in the

overview. If εα ≥ B̃∗
h′, j

, there is an εα-witness for L i+1, j through Bh′, j , so we can

repeat the process with h′ (after updating U j ). If h′ does not exist (i.e., |Q j | = 1) or

if εα < B̃∗
h′, j

, we stop and declare εα to be optimal. Finally, we update U j to use the

truncated terrain function L i+1, j instead of L i+1, j .

We now give the invariant that holds at the beginning of each iteration of the for-

loop. The invariant is stated only for a row, analogous data structures and invariants

apply to the columns. A point (α, β) ∈ R
2 dominates a point (γ, δ) ∈ R

2 if α > γ

and β ≤ δ. As before, we from now on fix a row j , and we omit the index j from all

variables.

Invariant 1 At the beginning of iteration i + 1 in row j, we have computed the

optima L̃∗
1, L̃∗

2, . . . , L̃∗
i . Let a be the column such that a rightmost witness for L̃∗

i

passes through Ba . Then Q stores the first coordinates of the points in the sequence

(a, B̃∗
a ), (a +1, B̃∗

a+1), . . . , (i −1, B̃∗
i−1) that are not dominated by any other point in
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the sequence. In addition, U stores the (truncated ) terrain functions for the vertical

sides in columns a + 1, . . . , i .

Invariant 1 holds initially, so we need to prove that it is maintained in each iteration

of the for-loop. This is done in the following lemma.

Lemma 2.8 Algorithm 1 maintains Invariant 1.

Proof By the invariant, a rightmost witness for L̃∗
i passes through Bh0 , where h0 is the

head of Q at the beginning of the iteration. Let h∗ be the column such that a rightmost

witness for L̃∗
i+1 passes through Bh∗ . Then h∗ is contained in Q after i has been added,

because by Lemma 2.6, we have h∗ ∈ {h0, . . . , i}, and by Corollary 2.5, there can be

no column index a ∈ {h∗ + 1, . . . , i} that dominates (h∗, B̃∗
h∗).

Now let h be the head of Q before a minimum query on U , and h′ the second element

of Q. By Lemma 2.7, the minimum query gives the smallest εα for which there is an

εα-witness for L i+1 that passes through Bh . If h < h∗, then εα ≥ L̃∗
i+1 (definition

of L̃∗); L̃∗
i+1 ≥ B̃∗

h∗ (there is a witness through Bh∗); and B̃∗
h∗ ≥ B̃∗

h′ (the dominance

relation ensures that the B̃∗-values for the indices in Q are increasing). Thus, the

while-loop in line 12 proceeds to the next iteration. If h = h∗, then by Corollary 2.5,

we have B̃∗
a > B̃∗

h∗ for all a ∈ {h∗ + 1, . . . , i}, and the while-loop terminates with

the correct value for L̃∗
i . It is straightforward to check that Algorithm 1 maintains the

data structures Q and U according to the invariant. ⊓⊔

Theorem 2.9 Let δ be a convex distance function in R
d . Algorithm 1 computes

dF(P, Q) for δ in O(mn(Tue(m, d, δ) + Tue(n, d, δ))) time, where Tue represents

the time to insert into, delete from, and query the upper envelope data structure.

Proof Correctness follows from Lemma 2.8. For the running time, observe that we

insert each column index only once into Q and each terrain function at most twice into

U (once untruncated, once truncated). Hence, we can remove elements at most once or

twice. This results in an amortized running time of O(1+ Tue(n, d, δ)+ Tue(m, d, δ))

for a single iteration of the for-loop. Since there are O(mn) cells, this results in the

claimed total execution time, assuming that Tue is Ω(1). ⊓⊔

2.4 Avoiding Truncated Functions

In Algorithm 1, the envelope U uses the (full) unimodal distance function only for L i+1

and the truncated versions for the other cells. Since our algorithm relies on an efficient

data structure to maintain dynamic upper envelopes of these distance functions, and

since it is easier to design such a data structure if the set of possible functions to

be stored is limited, we would like to avoid the need for truncating the functions. In

general, this seems hard to do, but we show here that as long as the functions behave like

pseudolines (i.e., each pair of functions intersects at most once, and this intersection is

proper), we can actually work with the simpler set of untruncated distance functions.

Since we compare only functions in the same row (or column), functions in different

rows or columns may still intersect more than once. Using the full unimodal functions

potentially allows for a more efficient implementation of the envelope structure.
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The idea is as follows: since the terrain distance functions on the cell boundaries are

unimodal, the initial (from left to right) envelopes of the truncated distance functions

and the untruncated distance functions are identical. The two envelopes begin to differ

only when the increasing part of an untruncated distance function “cuts off” a part

of the envelope. We analyse our algorithm to understand under which circumstances

this situation can occur. It turns out that in most cases, the increasing parts of the

distance functions are “hidden” by the inclusion of the constant L̃∗
i in the witness

envelope, except for one case, namely when the deletion of a distance function from

the witness envelope exposes an increasing part of a distance function that did not

previously appear on the envelope. However, we will see that this case can be detected

easily, and that it can be handled by simply removing the increasing distance function

from the upper envelope. The fact that the distance functions behave like pseudolines

ensures that the removed function does not play any role in later queries to the witness

envelope. This idea is formalized and proven below.

We modify Algorithm 1 as follows: we omit the update to U in line 19, thus U

maintains untruncated, unimodal functions. To perform a minimum-point query, we

first run the query on the upper envelope of the full unimodal functions. Let (α, εα)

be the resulting minimum. If (α, εα) lies on the intersection of an increasing La and

a decreasing Lb with a < b, we remove La from U and repeat the query. Otherwise,

we return εα , which is then again combined with the constants L̃∗
i and B̃∗

h as usual.

Below, we prove that this modified algorithm is indeed correct. Let U be the enve-

lope maintained by the modified algorithm (with full functions), and U the envelope

of the original algorithm (with truncated functions). We let both U and U include the

constants L̃∗
i and B̃∗

h . The envelopes U and U are unimodal: they consist of a decreas-

ing part, (possibly) followed by an increasing part. Let D and D be the decreasing

parts of U and U , up to the global minimum.

First, we make the following observation. With it, we prove that D and D are

identical throughout the algorithm (Invariant 2).

Lemma 2.10 Fix a terrain function La . Let i ≥ a such that La is contained in U at

the end of iteration i . Then L̃∗
i ≥ L̃∗

a ≥ minλ La(λ).

Proof By Invariant 1, there is a witness for L̃∗
i through La . ⊓⊔

Invariant 2 Suppose we run the original and the modified algorithm simultaneously.

Then, after each minimum query, D and D are identical. Furthermore, any function

that the modified algorithm deletes during a minimum query does not appear on D in

any future iteration.

Proof Initially, Invariant 2 trivially holds as the upper envelopes are empty. The

envelopes U and U are modified when:

(a) inserting a full unimodal terrain function (line 8);

(b) truncating a terrain function (line 19);

(c) deleting a terrain function while updating the queue Q (line 13).

We now prove that each case indeed maintains the invariant.
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Case (a) The invariant tells us that D and D are identical before adding a full unimodal

terrain function, L i+1. Hence, L i+1 affects D and D in the same manner (either by

adding a piece or by shortening them) and Invariant 2 is maintained.

Case (b) The truncated part of L i+1 is the increasing part and hence does not belong to

D. As the iteration ends, i is increased by one, and L̃∗
i+1 is now included in the upper

envelope rather than L̃∗
i . In the truncated envelope U , the value of L̃∗

i+1 is determined

by D and the increasing part of L i+1. Hence, the minimum remains the same when

truncating L i+1, and D is unchanged. The modified algorithm skips the truncation

step, so D is not changed. Again, Invariant 2 is maintained.

Case (c): After deleting a function from U and U , Invariant 2 may get violated.

Although the invariant guarantees that all functions on D are stored by the modified

algorithm, it may happen that D is cut off by the increasing part of a function that is

truncated in U . In this case, let the minimum p = (px , py) of D be the intersection

of the increasing part of La and the decreasing part of Lb in iteration i . There are two

subcases: (c1) b < a < i ; or (c2) a < b < i .

Case (c1) cannot occur: during iteration a−1, both the decreasing part of Lb and the

increasing part of La are present in U . Thus, L̃∗
a ≥ py , and L̃∗

i ≥ py , by Lemma 2.10.

Therefore, D cannot be a proper prefix of D. In case (c2), the modified query algorithm

deletes La from U and repeats. If we argue that La does not occur on D in any future

iteration, the algorithm eventually stops with D and D identical, and with Invariant 2

maintained. For this, observe that (i) a < b and the decreasing part of La lies below

Lb; and (ii) by Lemma 2.10, L̃∗
i ≥ minλ La(λ) for any iteration i ≥ a in which La is

contained in U . Thus, La always lies below D. ⊓⊔

Now that we have established the desired invariant, the following theorem can be

stated as a direct consequence of it.

Theorem 2.11 Let j be a row of the distance terrain such that the distance functions

in row j intersect pairwise at most once. Then the minima computed by the modified

algorithm are identical to the minima computed by the original algorithm.

3 Polyhedral Distance

We consider the Fréchet distance with a convex polyhedral distance function δ, i.e.,

the “unit sphere” of δ is a convex polytope in R
d that strictly contains the origin.

For instance, the L1 and L∞ distance are polyhedral with the cross-polytope and the

hypercube as respective unit spheres. Throughout, we assume that δ has complexity

k, i.e., its polytope (unit sphere) has k facets. The polytope of δ is not required to

be regular or symmetric, but as before, we simplify the presentation by assuming

symmetry.

Intuitively, the distance δ(u, v) is the smallest scaling factor s ≥ 0 such that v lies

on the polytope, centered on u and scaled by a factor of s. We compute it as follows.

Let F denote the facets of the polytope of δ. Let δ f (u, v) denote the facet distance

for facet f ∈ F , that is, the multiplicative factor by which the hyperplane spanned

by f needs to be scaled from u to contain v. We assume that a facet f is defined
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through the point p f on the hyperplane spanned by f that is closest to the origin: the

vector from the origin to p f is normal to f . The distance δ f (u, v) is then computed

as p f · (v − u)/‖p f ‖2. This distance may be negative, but there is always at least one

facet with non-negative distance. Then δ(u, v) = max f ∈F δ f (u, v), the maximum

over all facet distances. For a general polytope, we can compute the facet distance in

O(d) and the distance between points in O(kd) time. However, for specific polytopes,

we may do better. To make this explicit in our analysis, we denote the time to compute

the facet distance by Tfacet(δ).

The distance terrain functions L i, j and Bi, j are piecewise linear for a convex poly-

hedral distance function δ. Each linear part corresponds to a facet of δ. Therefore, it

has at most k parts. Moreover, for a fixed line segment (i.e., within the same row or

column), each facet has a fixed slope: the parts for this facet are parallel. Depending

on the polytope, the maximum number of parts of a single function may be less than

k. We denote this actual maximum number of parts by k′. Computing the linear parts

of a distance terrain function L i, j or Bi, j requires computing which facets may occur.

We denote the time it takes to compute the k′ relevant facets for a given boundary by

Tpart(δ).

We give three approaches. First, we use an upper envelope structure as in the

Euclidean case, but exploiting that the distance functions are now piecewise linear.

Second, we use a brute-force approach which is more efficient for small to moderate

dimension d and complexity k. Third, we combine these methods to deal with the case

of moderately sized d and k′ being much smaller than k.

Upper envelope data structure. As L i, j and Bi, j are piecewise linear, we need a data

structure that dynamically maintains the upper envelope of lines under insertions,

deletions, and minimal-point queries. Note that the minimal point query now requires

us to compute the actual minimal point on the upper envelope of lines (instead of

parabolas). We apply the same duality transformation as in the Euclidean case and

maintain a dynamic convex hull. That is, every line ℓ : y = ax + b on the upper

envelope dualizes to a point ℓ∗ = (a,−b). Any point p = (a, b) dualizes to a line

p∗ : y = ax − b. If a point p is above a line ℓ, then the point ℓ∗ is above the

line p∗. Hence, the upper envelope corresponds to the dual lower convex hull. Since

the minimum of the upper envelope occurs when the slopes change from negative

to nonnegative, it dualizes to the line segment on the convex hull that intersects the

y-axis. The fastest known data structure for this problem is due to Chan [12]: for h

lines, it has an O(log1+τ h) query and amortized update time, for any τ > 0.

However, in our case, we can do slightly better by using the data structure by Brodal

and Jacob [7]. This data structure does not support the minimal-point query directly.

However, we can make it work by observing that we must insert and delete up to k′

linear functions each time; it is acceptable to run multiple queries as well.

Lemma 3.1 We can implement an upper envelope data structure structure on h

piecewise linear functions of complexity at most k′ with an amortized update

time of O(Tpart(δ) + k′Tfacet(δ) + k′ log(hk′)) and a minimal-point query time of

O(k′ log(hk′)).
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Proof First, we consider insertions and deletions. Every function is piecewise linear

with at most k′ parts, so there are at most hk′ lines in the data structure. Hence, it

takes O(k′ log hk′) amortized time to insert and delete the parts of a single function.

To compute the k′ relevant lines that make up the piecewise linear function, we first

find the k′ relevant facets of δ in O(Tpart(δ)) time. Then we compute the parameters of

the corresponding lines by computing for each relevant facet f the distance between

P(i) and Q( j) and Q( j +1) with respect to f . This takes O(Tfacet(δ)) time per facet.

For the minimal-point query, we observe that the lines with positive slope (that

is, dual points with positive x-coordinate) are truncated at the end of each iteration.

Hence, at any point during the algorithm, the dual lower hull contains at most k′

points with positive x-coordinate. We maintain only the points with nonpositive x-

coordinate (lines with negative slope) in the data structure. To find the line segment

that intersects the y-axis, we perform for each current point with positive x-coordinate

a tangent query in the convex hull structure. We maintain the tangent with the lowest

intersection with the y-axis: this tangent gives the intersection between the y-axis and

the actual lower hull (including the points with positive x-coordinate). We perform k′

queries, each in O(log hk′) time; a minimal-point query takes O(k′ log hk′) time. ⊓⊔

Brute-force approach. A very simple data structure can often lead to good results.

Here, we describe such a data structure, exploiting that in a single row, the distance

function for each facet has a fixed slope. Unlike the other approaches, this method

does not require computing the k′ relevant facets and thus not depend on Tpart(δ).

Lemma 3.2 After O((m + n)k(Tfacet(δ) + log k)) total preprocessing time, we can

implement the upper envelope structure with an amortized update and query time of

O(kTfacet(δ)).

Proof During the preprocessing phase, we sort for each segment of P and Q

the facets of δ by the corresponding slope on the witness envelope. This takes

O((m + n)k(Tfacet(δ) + log k)) total time using the straightforward algorithm.

Consider the upper envelope data structure U j for a row j (columns are again anal-

ogous). Structure U j must represent a number of unimodal functions, each consisting

of a number of linear parts. Each linear part corresponds to a certain facet of the poly-

tope and has a fixed slope. For each facet f ∈ {1, . . . , k} (in sorted order), structure

U j stores a doubly linked list F f containing lines spanned by these linear parts. Given

the fixed slope, lines in a single list F f do not intersect and are sorted from top to

bottom. The upper envelope is fully determined only by top lines in each list F f .

When processing a cell boundary L i, j , we update each list Fl in U j : remove all

lines below the line for P(i) from the back of Fl , and append the line for P(i). Per

facet, it takes O(Tfacet(δ)) time to compute the y-intersection of the line and amortized

O(1) time for the insertion. We then go through the top lines in the Fl in sorted order

to determine the minimal value on the upper envelope in O(k) time. ⊓⊔

A hybrid approach. We can combine the methods from Lemmas 3.1 and 3.2 into a

hybrid approach.

123



330 Discrete Comput Geom (2016) 56:315–336

Lemma 3.3 After O((m +n)k) total preprocessing time, we can implement the upper

envelope structure with amortized update time O(Tpart(δ)+k′Tfacet(δ)+k′ log k) and

minimal-point query time O(k′ log k).

Proof For each row (or column), we initialize k empty lists Fl , l = 1, . . . , k. This takes

O((m +n)k) total preprocessing time. The role of the Fl is similar to Lemma 3.2, i.e.,

each list Fl corresponds to a facet of the polytope. However, unlike Lemma 3.2, we

do not sort the facets. Instead, we maintain the upper envelope of the top lines in each

Fl , using the method from Lemma 3.1. At each cell boundary, we find the k′ relevant

parts and compute their parameters. The parts are inserted into the appropriate lists

Fl . If a new part appears at the top of its list, we update the upper envelope structure.

Since now this structure stores only k lines, this takes amortized time

O(Tpart(δ) + k′Tfacet(δ) + k′ log k).

Minimal-point queries are done as before (see the proof of Lemma 3.1). Again, the

structure contains only k lines: a query takes O(k′ log k) time. ⊓⊔

Plugging Lemmas 3.1, 3.2, and 3.3 into Theorem 2.9 yields the following result. The

method that works best depends on the chosen polytope and on the given complexity

and dimensions, that is, on the relationship between n, k, k′ and d.

Theorem 3.4 Let δ be a convex polyhedral distance function of complexity k in R
d .

Algorithm 1 computes the Fréchet distance under δ in

O

⎛
⎝min

⎧
⎨
⎩

mn(Tpart(δ) + k′Tfacet(δ) + k′ log(mnk′)),
(m + n)k log k + mnkTfacet(δ),

(m + n)k + mn(Tpart(δ) + k′Tfacet(δ) + k′ log k)

⎫
⎬
⎭

⎞
⎠

time, where Tpart(δ) is the time needed to find the relevant parts of a distance function

and Tfacet(δ) the time needed to compute the distance between two points for a given

facet of δ.

Proof The first bound follows directly from Lemma 3.1 and Theorem 2.9. For the

second bound, use Lemma 3.2 and observe that (m + n)kTfacet(δ) is asymptotically

smaller than mnkTfacet(δ). For the last bound, use Lemma 3.3. ⊓⊔

For a generic polytope, we have Tfacet(δ) = O(d), so the brute-force approach

runs in O(nk log k + n2kd) time. The other methods can be faster only if k′ = o(k)

and if we have an o(kd)-time method to compute the relevant facets for a distance

terrain function. The hybrid method improves over the upper-envelope method if k′

is much smaller than k. Note that there cannot be more than min{k, nk′} elements in

the upper envelope for the hybrid method. However, if k > nk′, the upper-envelope

method outperforms the hybrid method. Thus, to gain an advantage over the brute

force method, a structured polytope is necessary.

Corollary 3.5 Let δ be a convex polyhedral distance function of complexity k in R
d .

Algorithm 1 computes the Fréchet distance under δ in O((m + n)k log k + mnkd)

time.
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Let us now consider L∞. Its polytope is the hypercube; each facet is determined by a

maximum coordinate. We have k′ ≤ k = 2d, and the brute-force method outperforms

the other methods. However, a facet depends on only one dimension, so we compute

the distance for a given facet in Tfacet(L∞) = O(1) time.

Corollary 3.6 Algorithm 1 computes the Fréchet distance under the L∞ distance in

R
d in O((m + n)d log d + mnd) time.

For L1, the cross-polytope, there are k = 2d facets. Structural insights help us

improve upon the brute-force method. The 2d facets of the cross-polytope are deter-

mined by the signs of the coordinates. Let ℓ = Q( j)Q( j + 1) be the line segment

and p = P(i) the point defining the terrain distance L i, j . At the breakpoints between

the parts of L i, j , one of the coordinates of ℓ − p changes sign. Therefore, there are

at most k′ = d + 1 parts. We find these parts efficiently by computing for each coor-

dinate the point on ℓ − p where the coordinate becomes zero (if any). Sorting these

values gives a representation of the relevant facets in O(d log d) time. The actual

facets can then by computed in Tpart(L1) = O(d2) time. Computing the facet dis-

tance takes Tfacet(L1) = O(d) time, as for a general polytope. We conclude that the

hybrid approach outperforms the brute-force approach. Whether the hybrid method

outperforms the “pure” upper-envelope method depends on the dimension d.

Corollary 3.7 Algorithm 1 computes the Fréchet distance under the L1 distance in

R
d in

O(min{mn(d2 + d log(mn)), (m + n)2d + mnd2})

time.

Proof From the arguments above and from Theorem 3.4, we know that the

hybrid method runs in O((m + n)2d + mnd2) time. Similarly, the upper-envelope

method runs in O(mn(d2 + d log(mnd))) time. Simplification of the latter gives

O(mn(d2 + d log(mn))). ⊓⊔

4 Approximating the Euclidean Distance

We can use polyhedral distance functions to approximate the Euclidean distance. This

allows us to obtain the following result.

Corollary 4.1 Algorithm 1 computes a (1+ε)-approximation of the Fréchet distance

under the Euclidean distance in R
d in O(mn(d + ε−1/2)) time.

Proof A line segment ℓ and a point p span exactly one plane in R
d (unless they are

collinear, in which case we pick an arbitrary plane). On this plane, the Euclidean unit

sphere O is a circle; the same circle for each plane. We approximate O with a k-regular

inscribed polygon O in R
2. We need to orient this polygon consistently for all points p,

e.g., by having one side parallel to ℓ. Simple geometry shows that for k = O(ε−1/2),

the polygon O is a (1 + ε)-approximation to O . The computation is two-dimensional,
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but we must find the appropriate transformations, which takes O(d) time per boundary.

We no longer need to sort the facets of the polytope for each edge; the order is given

by O . This saves a logarithmic factor for the initialization of the brute-force method.

This method performs best and, using Theorem 3.4, we get an execution time of

O(mn(d + ε−1/2)+ (m + n)ε−1/2 log ε−1/2). However, for ε−1/2 ≥ log2 m + log2 n,

we simply compute the exact Fréchet distance in O(mn(d + log2 m + log2 n)) time

by Theorem 5.3. ⊓⊔

Though this paper focuses on avoiding the decision-and-search paradigm, we can

do better if we are willing to invoke an algorithm for the decision version of the Fréchet

distance problem.

Corollary 4.2 We can calculate a (1+ε)-approximation of the Fréchet distance under

the Euclidean distance in O(mnd + Tdec(m, n, d) log ε−1) time, where Tdec(m, n, d)

is the time needed to solve the decision problem for the Fréchet distance.

Proof Corollary 4.1 gives a
√

2-approximation to the Euclidean distance in O(mnd)

time. Then, we go from a
√

2-approximation to a (1 + ε)-approximation by binary

search, using the decision algorithm. ⊓⊔

Solving the decision version takes Tdec(m, n, d) = O(mnd) time [1]. For d = 2

and the right relation between m and n, one can do slightly better [10,18]: on a

pointer machine, we may solve the decision version in O(mn(log log n)3/2/
√

log n),

assuming m ≤ n and m = Ω(log3 n); using a word RAM, we may solve it in

O(mn(log log n)2/ log n), assuming m ≤ n and m = Ω(log6 n).

5 Euclidean Distance

Let us now consider our framework under the Euclidean distance δE. The framework

applies, because δE is convex (and symmetric). In fact, we use the squared Euclidean

distance δ2
E = δE(x, y)2. Since squaring is a monotone function on R

+
0 , computing

the Fréchet distance for the squared Euclidean distance is equivalent to the Euclidean

case: if ε = dF(P, Q) for δ2
E, then

√
ε = dF(P, Q) for δE. We show that the terrain

functions for δ2
E in each row and column behave like pseudolines. We consider only

the vertical sides; horizontal sides are analogous.

Lemma 5.1 For δ = δ2
E, each distance terrain function L i, j is part of a parabola.

Any two functions L i, j and L i ′, j intersect at most once.

Proof The function L i, j represents the squared Euclidean distance between the point

p = P(i) and the line segment ℓ = Q( j)Q( j + 1). Let ℓ′ be the line though ℓ,

uniformly parameterized by λ ∈ R, i.e., ℓ′(λ) = λ(Q( j + 1) − Q( j)) + Q( j). Let

λp be the λ for which ℓ′(λ) is closest to p. By the Pythagorean theorem, L i, j (λ) =
‖ℓ′(λ) − ℓ′(λp)‖2 + ‖ℓ′(λp) − p‖2. By the parametrization of ℓ′, we have

‖ℓ′(λ) − ℓ′(λp)‖2 = ‖ℓ‖2(λ − λp)
2 = ‖ℓ‖2λ2 − 2‖ℓ‖2λpλ + ‖ℓ‖2λ2

p.

123



Discrete Comput Geom (2016) 56:315–336 333

Hence, L i, j is a parabolic function in λ, where the quadratic term depends only on

ℓ. For two functions in the same row, this term is the same, and thus the parabolas

intersect at most once. ⊓⊔

By Theorem 2.11 and the above lemma, we can use the modified algorithm to

maintain U j with the full parabolas rather than truncated ones. The parabolas of a single

row share the same quadratic term, so we can treat them as lines by subtracting ‖ℓ‖2λ2.

In this transformed space, the constant functions L̃∗
i, j and B̃∗

h, j are now downward

parabolas. This causes no problems, as these are needed only after computing the

minimum on the upper envelope: we can add the term ‖ℓ‖2λ2 back to the answer

before these constant functions are needed.

However, the minimum of the upper envelope of the parabolas does not necessarily

correspond to the minimum of the lines. Hence, we need a “special” minimal-point

query that computes the minimal point on the parabolas, using the upper envelope of

the lines. The advantage of this transformation is that, by treating parabolas as lines,

we may implement U j with a standard data structure for dynamic half-plane intersec-

tion or, dually, dynamic convex hull. The fastest such structure is due to Brodal and

Jacob [7], but it does not explicitly represent the upper envelope. It is not clear if it

can be modified to support our special minimal-point query.2 Therefore, we use the

slightly slower structure by Overmars and Van Leeuwen [19], giving O(log2 h) time

insertions and deletions, for a structure containing h lines (parabolas). Most impor-

tantly, we may compute the answer to the special minimal-point query in O(log h)

time.

Lemma 5.2 A minimal-point query on the upper envelope of h lines can be imple-

mented in O(log h) time.

Proof The data structure by Overmars and Van Leeuwen maintains a concatenable

queue for the upper envelope. A concatenable queue is an abstract data type providing

the operations insert, delete, concatenate and split. If the queue is implemented with

a red-black tree, all these operations take O(log h) time. In addition to the tree, we

maintain a doubly-linked list that stores the elements in sorted order, together with

cross-pointers between the corresponding nodes in the tree and in the list. The list

and the cross-pointers can be updated with constant overhead. Furthermore, the list

enables us to perform predecessor and successor queries in O(1) time, provided that

a pointer to the appropriate node is available.

The order of the points on the convex hull corresponds directly to the order of the

lines, and hence of the parabolas, on their respective upper envelopes. We use the

red-black tree to perform a binary search for a minimal point on the upper envelope

U of the parabolas. We cannot decide how to proceed solely based on the parabola p

of a single node. However, using the predecessor and successor of p, we compute the

local intersection pattern to guide the binary search. This is detailed below.

2 Due to the complexity of the data structure of Brodal and Jacob [7], it seems to be a formidable task to

adapt it to our needs. However, there are simpler, slightly suboptimal, data structures for dynamic planar

convex hulls that may be more amenable to modification [6,17]. This would immediately lead to a better

running time for our algorithm.
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(i) (iii/c)(ii)

p l

l

p

p

lr

Fig. 5 (i) The minimum is pl ; (ii) pl excludes the possibility that the minimum lies on or right of p; (iii/c)

The minimum cannot be left of p. If the analogous case applies to pr , the minimum of p is the minimum

of U

Let p be a parabola on U ; let l be the predecessor and r the successor of p.

Let p∗, l∗, and r∗ denote their respective minima. For z ∈ R
2, let x(z) be the x-

coordinate of z. The parabolas p, l, r pairwise intersect exactly once. Let pl = p ∩ l

and pr = p ∩ r . As l and r are the neighbors of p on U , we have x(pl) ≤ x(pr );

the part of p on U is between pl and pr . We distinguish three cases (see Fig. 5):

(i) x(p∗) ≤ x(pl) ≤ x(l∗); (ii) x(pl) ≥ x(l∗), x(p∗); and (iii) x(pl) ≤ x(p∗). We

cannot have x(l∗) ≤ x(pl) ≤ x(p∗): this would imply that l is above p right of pl ,

although l is the predecessor of p.

In case (i), l is decreasing and p is increasing at pl , so pl is the minimum of U . In

case (ii), p and the part of U right of p do not contain the minimum, as l is increasing

to the left of pl . Hence, we recurse on the left child of p.

In case (iii), the part of U left of pl is higher than p. We now consider the analogous

cases for pr : (a) x(r∗) ≤ x(pr ) ≤ x(p∗); (b) x(pr ) ≤ x(p∗), x(r∗); and (c) x(pr ) ≥
x(p∗). In case (a), pr is the minimum. In case (b), we recurse on the right child of p.

In case (c), we get x(pl) ≤ x(p∗) ≤ x(pr ), so p∗ is the minimum of U .

As we can access the predecessor and successor of a node and determine the inter-

section pattern in constant time, a minimal-point query takes O(log h) time. ⊓⊔

Though not necessary for our algorithm, we observe that we may actually obtain the

leftmost minimal value (after including the constant functions) by performing another

binary search. We obtain the following theorem.

Theorem 5.3 Algorithm 1 computes the Fréchet distance under the Euclidean dis-

tance in R
d in O(mn(d + log2 mn)) time.

Proof Lemma 5.1 implies that we may use the modified algorithm (Theorem 2.11).

For each insertion, we have to compute the corresponding parabola, in O(d) time.

The data structure by Overmars and Van Leeuwen [19] allows us to implement the

dynamic upper envelope of h functions with O(log2 h)-time insertions and deletions.

The special minimal-point query (Lemma 5.2) takes only O(log h) time. Hence,

Tue(h, d, δ) = O(d + log2 h) and Theorem 2.9 implies a total execution time of

O(mn(d + log2 m + log2 n)). Since log2 m + log2 n = log2(mn) − 2 log m log n, the

execution time can be simplified to O(mn(d + log2(mn))). ⊓⊔

Theorem 5.3 gives a slightly slower bound than known results for the Euclidean

metric. However, we think that our framework has potential for a faster algorithm (see

Sect. 6).
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6 Conclusions and Open Problems

We introduced a new method to compute the Fréchet distance. It avoids using a decision

algorithm and its consequence: a search on critical values. There is no need for paramet-

ric search. For polyhedral distance functions we gave an O(mn)-time algorithm. The

implementation of this algorithm borders the trivial: the most advanced data structure

is a doubly linked list. In addition, it can be used to compute a (1 + ε)-approximation

of the Euclidean Fréchet distance in O(mn/
√

ε) time or even in O(mn log ε−1) time,

if we are willing to use a decision algorithm. For the exact Euclidean case, we obtain

a slightly slower running time of O(mn(log2 m + log2 n)). This requires dynamic

convex hulls and does not really improve ease of implementation. Below, we propose

two open problems for further research. For simplicity, we assume here that the two

curves have the same complexity, that is, m = n.

Faster Euclidean distance. We think that our current method has room for improve-

ment; we conjecture that it is possible to extend on these ideas to obtain an O(n2)

algorithm for the Euclidean case, at least for curves in the plane. Currently we use the

full power of dynamic upper envelopes, which does not seem necessary since all the

information about the distance terrain functions is available in advance.

For points in the plane, we can determine the order in which the parabolas occur on

the upper envelopes, in O(n2) time for all boundaries. From the proof of Lemma 5.1,

we know that the order is given by the projection of the vertices onto the line. We

compute the arrangement of the lines dual to the vertices of a curve in O(n2) time. We

then determine the order of the projected points by traversing the zone of a vertical line.

This takes O(n) time for one row or column. Unfortunately, this alone is insufficient

to obtain the quadratic time bound.

Locally correct Fréchet matchings. A Fréchet matching is a homeomorphism ψ ∈ Ψ

such that it is a witness for the Fréchet distance, i.e., maxt∈[0,n] δ(P(t), Q(ψ(t)) =
dF(P, Q). A Fréchet matching that induces a Fréchet matching for any two matched

subcurves is called a locally correct Fréchet matching [11]. It enforces a relatively

“tight” matching, even if the distances are locally much smaller than the Fréchet

distance of the complete curves. The algorithm by Buchin et al. [11] incurs a linear

overhead on the algorithm of Alt and Godau [1], resulting in O(n3 log n) running time.

The discrete Fréchet distance is characterized by measuring distances only at ver-

tices. A locally correct discrete Fréchet matching can be computed without asymptotic

overhead by extending the dynamic program to compute the discrete Fréchet distance

[11]. Our algorithm for the (continuous) Fréchet distance is much closer in nature to

this dynamic program than to the decision-and-search paradigm of previously known

methods. Therefore, we conjecture that our framework is able to avoid the linear over-

head in computing a locally correct Fréchet matching. However, the information we

currently propagate is insufficient: a large distance early on may “obscure” the rest of

the computations, making it hard to decide which path would be locally correct.
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