2,453 research outputs found

    Supporting variables for biological effects measurements in fish and blue mussels

    Get PDF
    Biological effects measurements in fish and blue mussel are fundamental in marine environmental monitoring. Nevertheless, currently used biomarkers may be confounded by basic physiological phenomena, such as growth, reproduction, and feeding, as well as thereby associated physiological variation. Here, we present a number of supporting variables, which are essential to measure in order to obtain reliable biological effects data, facilitate their interpretation, and make valid comparisons. For fish, these variables include: body weight, body length, condition, gonad maturation status, various somatic indices, age, and growth. For blue mussels, these variables include: volume, flesh weight, shell weight, and condition. Also, grossly visible anomalies, lesions, and parasites should be recorded for both fish and blue mussels. General confounding factors and their effects are described, as well as recommendations for how to handle themPostprint

    Kinetico-mechanistic study on the C-H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexesss

    Get PDF
    The cyclometallation reactions of dinuclear μ-acetato complexes of the type [Pd(AcO)(μ-AcO)L]2 (L = 4-RC6H4CH2NH2, R = H, Cl, F, CF3), a process found to occur readily even in the solid state, have been studied from a kinetico-mechanistic perspective. Data indicate that the dinuclear acetato bridged derivatives are excellent starting materials to activate carbon-hydrogen bonds in a facile way. In all cases the established concerted ambiphilic proton abstraction by a coordinated acetato ligand has been proved. The metallation has also been found to occur in a cooperative manner, with the metallation of the first palladium unit of the dimeric complex being rate determining; no intermediate mono-metallated compounds are observed in any of the processes. The kinetically favoured bis-cyclopalladated compound obtained after complete C-H bond activation does not correspond to the final isolated XRD-characterized complexes. This species, bearing the classical open-book dimeric form, has a much more complex structure than the final isolated compound, with different types of acetato ligand

    Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer

    Full text link
    We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.We are thankful for support from MICINN (MAT2013-46753-C2-1-P, MAT2013-46502-C2-1/2-P and CTQ2011-26507), Eusko Jaurlaritza (S-PE13UN016) and Generalitat Valenciana PrometeoII/2014/076
    corecore