191 research outputs found

    An upstream open reading frame modulates ebola virus polymerase translation and virus replication

    Get PDF
    Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a β-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target

    Patterns for High Performance Multiscale Computing

    Get PDF
    We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives

    Restauration morpho-dynamique et redynamisation de la section court-circuitée du Rhin en aval du barrage de Kembs (projet INTERREG / EDF)

    Get PDF
    National audienceThe Upper Rhine River has been heavily impacted by channelization for flood protection and navigation, and then by damming for hydropower generation. In normal non flooding conditions, most of the flows are diverted in a canalized section whereas the regulated “old Rhine” bypassed reach runs a minimum flow. Between Huningue and Neuf-Brisach, engineering works induced simplification and stabilization of the channel pattern from a formerly braiding sector to a single incised channel, hydrological modifications, bottom armouring due to bedload decrease, and thus ecological alterations. Two complementary and interdisciplinary projects have been initiated to restore alluvial morphodynamics: i) the international “INTERREG IV - Redynamisation of the old Rhine” project (2009-2012) coordinated by the Alsace region, France; ii) the left bank “controlled erosion” project launched by Electricité de France (EDF) within Kembs hydroelectric station relicensing process since 2003-2004. The purpose of these projects is to evaluate the feasibility of an important hydro-morphological and ecological restoration plan on a 45 km long reach, through both field testing of bank erosion techniques at favourable locations, and artificial sediments input from right bank excavations. This will help define possible long term prospective scenarios, in order to restore sustainable sediment transport, morphodynamics variability and associated ecological functions. The study will involve historical analysis, hydro-morphological / hydraulic physical and numerical modelling, physical and ecological monitoring, and sociological aspectsLe Rhin alsacien-allemand a enregistré de profondes modifications morphologiques et hydrologiques à la suite de sa correction et de sa régularisation pour la protection contre les crues et la navigation, puis après la construction de barrages hydro-électriques. Les aménagements réalisés entre Huningue et Neuf-Brisach ont engendré une simplification et une stabilisation du style fluvial. Un fleuve en tresses a cédé la place à un chenal unique incisé. Le fond de chenal est devenu pavé à cause d’une diminution des apports de charge de fond et des altérations écologiques ont été observées (simplification des habitats aquatiques et riverains). Deux projets complémentaires et interdisciplinaires ont été engagés afin de restaurer une dynamique des formes alluviales : i) le projet international INTERREG IV – Redynamisation du Vieux Rhin (2009-2012) sous l’impulsion de la région Alsace ; ii) le projet d’érosion maitrisée des berges de la rive gauche conduit par Electricité de France (EDF) dans le cadre du renouvellement de la concession de l’aménagement de Kembs. L’objectif des deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la redynamisation d’un tronçon de 45 km. L’étude repose sur une analyse historique, l’exploitation de modèles à la fois physiques et numériques, et les suivis morphologiques in situ d’une recharge artificielle en sédiments et d’érosions de berge contrôlées. Ces études de faisabilité sont complétées par des analyses écologique et sociologique pour apprécier l’impact socio-environnemental de ces projets

    Human adaptation of Ebola virus during the West African outbreak

    Get PDF
    The 2013–2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the cocirculation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages

    Enhanced Protection against Ebola Virus Mediated by an Improved Adenovirus-Based Vaccine

    Get PDF
    Jason S. Richardson is with the Public Health Agency of Canada, Michel K. Yao is with the Public Health Agency of Canada, Kaylie N. Tran is with the Public Health Agency of Canada and University of Manitoba, Maria A. Croyle is with UT Austin, James E. Strong is with the Public Health Agency of Canada and University of Manitoba, Heinz Feldmann is with the Public Health Agency of Canada and University of Manitoba, Gary P. Kobinger is with the Public Health Agency of Canada and University of Manitoba.Background -- The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Methodology/Principal Findings -- Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. Conclusions/Significance -- We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.Financial support was received from the following sources: The Public Health Agency of Canada and the Chemical, Biological, Radiological or Nuclear Research and Technology Initiative (grant #CRTI-06-0218RD awarded to GPK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Pharmac

    Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes

    Get PDF
    Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses

    Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Get PDF
    The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property

    Establishment of Fruit Bat Cells (Rousettus aegyptiacus) as a Model System for the Investigation of Filoviral Infection

    Get PDF
    Marburg virus and several species of Ebola virus are endemic in central Africa and cause sporadic outbreaks in this region with mortality rates of up to 90%. So far, there is no vaccination or therapy available to protect people at risk in these regions. Recently, different fruit bats have been identified as potential reservoirs. One of them is Rousettus aegyptiacus. It seems that within huge bat populations only relatively small numbers are positive for filovirus-specific antibodies or filoviral RNA, a phenomenon that is currently not understood. As a first step towards understanding the biology of filoviruses in bats, we sought to establish a model system to investigate filovirus replication in cells derived from their natural reservoir. Here, we provide the first insights into this topic by monitoring filovirus infection of a Rousettus aegyptiacus derived cell line, R06E. We were able to show that filoviruses propagate well in R06E cells, which can, therefore, be used to investigate replication and transcription of filovirus RNA and to very efficiently perform rescue of recombinant Marburg virus using reverse genetics. These results emphasize the suitability of the newly established bat cell line for filovirus research

    Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA

    Get PDF
    The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies
    corecore