-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by UCL Discovery

Future Generation Computer Systems 91 (2019) 335-346

Contents lists available at ScienceDirect
FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

Patterns for High Performance Multiscale Computing)

S. Alowayyed *** T. Piontek ¢, J.L. Suter ¢, 0. Hoenen®¢, D. Groen ™, O. Luk¢, B. Bosak®, B
P. Kopta ¢, K. Kurowski ¢, O. Perks#, K. Brabazon®, V. Jancauskas b D. Coster?®,
P.V. Coveney ¢, A.G. Hoekstra !

@ Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
b King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia

¢ Poznari Supercomputing and Networking Center, Poznari, Poland

d Centre for Computational Science, University College London, United Kingdom

¢ Max-Planck-Institut fiir Plasmaphysik, Garching, Germany

f Department of Computer Science, Brunel University London, United Kingdom

& ARM Ltd., Warwick, United Kingdom

N I eibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Garching, Germany

U ITMO University, Saint-Petersburg, Russian Federation

HIGHLIGHTS

We introduce the idea of the Multiscale Computing Patterns (MCP).

We present the MCP software for High Performance Multiscale Computing.

To simplify and automate the execution of complex multiscale simulations on HPC.

Also to provide both application-specific and pattern-specific performance optimisation.
We test the performance and the resource usage for three multiscale models (two MCPs).
We demonstrate how the software automates resource selection and load balancing.

ARTICLE INFO ABSTRACT

Article history: We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing.
Received 9 January 2018 Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Com-
Received in revised form 18 July 2018 puting Patterns Software, which consists of description, optimisation and execution components. First,
Accepted 27 August 2018 the description component translates the task graph, representing a multiscale simulation, to a particular
Available online xxxx . R L . .

type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms

Keywords: to find the most suitable mapping between submodels and available HPC resources. Third, the execution
Multiscale computing component which a middleware layer maps submodels to the number and type of physical resources
High performance computing based on the suggestions emanating from the optimisation part together with infrastructure-specific
Modelling methodology metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing

Distributed computing

- Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution
Model coupling

of complex multiscale simulations on high performance computers, and to provide both application-
specific and pattern-specific performance optimisation. We test the performance and the resource usage
for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing
so, we demonstrate how the software automates resource selection and load balancing, and delivers

performance benefits from both the end-user and the HPC system level perspectives.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multiscale modelling & simulation has become a well-

_ established way to study complex phenomena that encompass

* Corresponding author at: Computational Science Lab, Institute for Informatics, multiple space and time scales [1]. In this approach, a multiscale
Faculty of Science, University of Amsterdam, The Netherlands. . r) ! A

E-mail addresses: S.A.Alowayyed@uva.nl (S. Alowayyed), model is constructed by combining, or coupling, a collection of

A.G.Hoekstra@uva.nl (A.G. Hoekstra). single-scale submodels, each of which captures processes on a

https://doi.org/10.1016/j.future.2018.08.045
0167-739X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/195308825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.future.2018.08.045
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.08.045&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:S.A.Alowayyed@uva.nl
mailto:A.G.Hoekstra@uva.nl
https://doi.org/10.1016/j.future.2018.08.045
http://creativecommons.org/licenses/by/4.0/

336 S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

distinct space and time scale; see e.g. [2-4]. Multiscale mod-
elling is widely used in most areas of science and engineering [5],
such as biomedicine [6-8], fusion [9,10], material science [10,11],
energy [12] and engineering [10,13]. It is self-evident that any
high-fidelity multiscale model must employ substantial high per-
formance computing resources, since the individual single scale
models comprising it themselves have to run on such machines.

In addition to specific multiscale applications, a number of tools
and frameworks which assist in multiscale computing have been
established. These range from domain-specific frameworks such
as AMUSE [14] and OASIS-MCT [15] to solver-specific frameworks
such as the MOOSE framework for finite-element codes [16] and
fully generic frameworks [1,3,17-19] encompassing related cou-
pling tools such as the Multiscale Coupling Library and Environ-
ment 2 (MUSCLE2) [20].

We have previously developed the Multiscale Modelling and
Simulation Framework (MMSF) [3,17-19], which provides a the-
oretical and methodological framework for constructing multi-
scale simulations in four main stages. First, we model multiscale
phenomena as collections of single-scale submodels then decide
on which models interact with each other and how. Single scale
models and couplings are presented within a Scale Separation
Map, allowing us to describe and compare multiscale models on
a conceptual level. Second, we specify the single scale models,
their couplings and interactions using the Multiscale Modelling
Language [1,18]. Third, we convert these definition to a fully imple-
mented multiscale model, currently relying on MUSCLE2 [20] (al-
though the concepts of the MMSF can also be applied to other cou-
pling environments such as AMUSE [14]). An important property of
MUSCLE?2 is the separation of concerns that it affords. Submodels
are not aware of any other components. Moreover, required adap-
tations are minimal on the level of a submodel in order for it to be
incorporated into a multiscale model implemented with MUSCLE2.
Fourth, we deploy and execute the multiscale application on a set
of computational resources. Developers and users can run different
submodels on different machines [4], using for example the QCG
middleware [21], a paradigm that we call Distributed Multiscale
Computing [4].

Knap et al. [22] have previously proposed a distributed mul-
tiscale computing framework that supports the on-demand exe-
cution of microscale models coupled to a macroscale model (very
similar to one of the computing patterns we proposed in [23]),
using large scale supercomputing resources. Although their frame-
work has, to our knowledge, not yet been applied outside the
domain of materials science for which it was originally created,
the authors do propose a general conceptual framework that could
be adopted for use in other disciplines. This resonates with our
vision of generic multiscale computing environments, where a
separation of concerns is achieved between multiscale modelling
& simulation on the one hand, and deploying and executing a
multiscale simulation in a given HPC environment on the other.

Our “Lego-based” philosophy for the construction and execu-
tion of multiscale applications relies on single scale submodels
and their interactions, and results in more degrees of freedom for
both programming and executing a multiscale simulation. To effi-
ciently execute multiscale applications on high-end HPC machines,
a number of challenges have to be addressed, such as load balance
(providing resources to each of the single scale models), fault toler-
ance (sometimes instantiations of single scale models may fail) and
energy awareness (depending on properties of single scale models,
potentially also in combination with load balancing, energy aware
optimisation). Our intention is that these challenges are handled
in a generic way, as far as possible avoiding the imposition of
that burden on the developers of multiscale applications. Those
developers should take care of the scale bridging mechanisms and
the efficiency of the single scale models, while the challenges of ex-
ecution within a High Performance Computing (HPC) environment

should be addressed through a generic layer added to MMSF that
we call Multiscale Computing Patterns (MCPs) [23].

We defined MCPs as “high-level call sequences that exploit
the functional decomposition of multiscale models in terms of
single scale models” [23], and distinguished three patterns: Ex-
treme Scaling, Heterogeneous Multiscale Computing and Replica
Computing. Each of these patterns is described using a generic
task graph that aids in understanding how to best map these
patterns to HPC resources. In addition to the generic task graph, an
MCP contains performance information about single scale models,
an XML-based specification of the multiscale application named
XMML [20], and a set of algorithms and heuristics used to combine
this into input files for the execution environment. In this paper,
we report on the design and implementation of the MCP software,
and present the first results of executing multiscale simulations
using MCPs, including discussions on the added value of using such
solutions for High Performance Multiscale Computing. Here, we
mainly integrate these MCPs with MMSF to increase the effective-
ness by means of which we can develop, deploy and execute mul-
tiscale simulations on existing petascale and emerging exascale
resources [23].

The MCP software architecture consists of a description compo-
nent, an optimisation component and an execution component. In the
description component the software uses the task graph of the spe-
cific multiscale model, in combination with auxiliary information
(e.g., definitions of single-scale models), to identify the type of pat-
tern and create input definitions for the optimisation component.
In the optimisation component, the software selects and applies
a set of optimisation algorithms to identify a range of efficient
mappings of the submodels in the application to specific HPC
resources. Lastly, the execution component is a middleware layer
which identifies the optimal mapping of submodels to the available
resources, taking additionally into account queueing times and
resource occupancy. Moreover, the execution component deploys
and executes the application, with all of its submodels on the target
resources. Three examples of using Multiscale Computing Patterns
software are illustrated and examples of cost functions are worked
out, showing that a wide range of variables for Multi-Objective
Optimisation algorithms can be chosen. The idea is that Multiscale
Computing Patterns software will automatically detect which cost
functions and algorithms to select based on the type of pattern and
user requirements.

The structure of our paper is as follows. We describe the MCPs
in Section 2, and introduce the Multiscale Computing Patterns soft-
ware and its components in Section 3. In Section 4, we provide by
way of proof of concept three examples of the use of the Multiscale
Computing Patterns software. Finally, we provide a discussion and
conclusion in Section 5.

2. Multiscale computing patterns and high performance multi-
scale computing

In this section, we discuss the concept of Multiscale Computing
Patterns and express the MCPs as generic task graphs. For full
details, we refer to Alowayyed et al. [23]. Fig. 1 shows the generic
task graphs for all three computing patterns.

The Extreme Scaling (ES) pattern represents a type of multiscale
model where one primary single-scale model is coupled to a set
of serial and/or parallel auxiliary models on any scale as shown
in Fig. 1((a) and (b)). The primary model! is compute intensive,
energy hungry, and highly scalable, whereas the auxiliary models
are not. Therefore, the efficiency of this type of multiscale models
is highly dependent on the efficiency of the primary model and

1 We assume one primary model here. In practice, ES could consist of more than
one primary model.

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346 337

the primary-auxiliary interactions. Assuming that developers have
implemented the primary model efficiently, the main aim is to
reach a minimal interference between primary and auxiliaries.
This can be done using load balancing while ensuring minimal
communication between primary and auxiliaries. The serial aux-
iliary model can give rise to strong underutilisation of available
resources (e.g. if it does not scale to a large number of cores), and
special mechanisms to handle such situation are required.

The Heterogeneous Multiscale Computing (HMC) pattern
(Fig. 1(c)) represents the typical form of macro-micro coupling,
where the numerical solver at the macro-scale level requires in-
put from multiple micro scale model instantiations (for instance
to compute a spatially varying quantity, such as for example a
constitutive equation, say a viscosity in a flow problem). Thus, the
number of micro-scale models is dynamic and largely dependent
on the dynamic evolution of the macro-model. The HMC manager
has some control over the number of micro-scale models, by
preventing redundant calculations (by storing results of previous
microscale simulations in a HMC database and where possible ex-
tracting results from the database, e.g. by interpolations between
results obtained earlier), and spawning extra micro-scale models,
when necessary. Typically, the number of micro-scale models will
be very large and a single microscale run may require substantial
computing resources and, hence, dominate computing and energy
cost.

In the Replica Computing (RC) pattern a large number of copies
of tera- and/or peta-scale simulations are needed to produce statis-
tically robust results. These replicas are not part of an overarching
structure like HMC, but are spawned in the initial step. In this step,
the parameter space for parameter sweeping is set. Then, simu-
lations and data processing per replica take place. Both static and
dynamic flavours of RC are considered in Fig. 1((d), (e)). All replicas
execute independently of each other. If a replica (i.e. a simulation)
fails, the RC patterns affords some level of fault tolerance, taking
into account maintaining the overall statistics. This is the main
difference with HMC. On the other hand, HMC and RC are similar
in terms of load balance issues.

3. Design of multiscale computing patterns software

The Multiscale Computing Patterns software consists of three
parts: (1) the Description Part, where the user describes the mul-
tiscale application, (2) the Optimisation Part, where the software
predicts and optimises the application performance, (3) and the
Execution Part, where the application is deployed using an under-
lying resource allocation service (in our case the QCG middleware).
We present the components of the Multiscale Computing Patterns
software, and their interrelations, in Fig. 2.

The logical description and the complete set of requirements of
a multiscale application is collected in the description component.
This part relies on concepts from the Multiscale Modelling and
Simulation Framework. It is helpful to facilitate the work of the
end user and provide a single input mechanism for all multiscale
applications, as well as detecting the type of MCP. The MMSF xMML
description file was extended for Replica Computing to accom-
modate the notation of the number of replicas. The optimisation
component determines which MCP optimisation applies, collects
required performance figures, and calculates the relevant metrics
(e.g. parallel efficiency, throughput, energy usage). Based on these
results, a constrained optimisation is performed resulting in a
small set of the most suitable execution scenarios which are passed
to the execution component. The role of the execution component
is to select the best allocation plan, based on the availability of
the requested resources and cost criteria (time to complete, energy
usage), and to start and monitor the execution.

3.1. Description component

The Description component (top layer in Fig. 2) contains an
architecture-agnostic definition of the multiscale application, and
its main requirements. It builds on concepts from the Multiscale
Modelling and Simulation Framework. The description component
consists of a task graph, submodel definitions, simulation and
middleware parameters and user information, all feeding into the
Translation Service.

The task graph is expressed in the form of a highly adaptable
textual description (XMML, see [20]) which is used to detect motifs
(repetitive submodels and dependencies). The task graph is also
needed to observe workflow related issues such as the expected
frequency of communication between submodels.

Submodel definitions contain all the information required for a
single-scale model to run. This includes information on submodel-
specific dependencies, and the resource requirements for each
submodel (e.g., mandatory use of GPU-architectures, or a minimal
memory requirement per core). The description component may
rely on previously developed tools such as MAD/MaMe [24], and
can already leverage existing configuration information from the
FabSim automation environment [25].

All the simulation and middleware parameters are collected in a
separate component. This includes input parameters, the required
environment modules and resource limits for the overall simu-
lation (all submodels and coupling library). Also, this component
holds all information needed to compose the multiscale simulation
(e.g. using MUSCLE2) and to execute the simulation (e.g. using QCG
Middleware [26]) using (distributed) HPC infrastructures such as
the Experiment Execution Environment (EEE). This component is
designed such that existing known machine configurations from
FabSim (machines.yml) can be directly reused in the context. Simi-
larly, user-specific information can be directly reused from existing
FabSim configurations (machines_user.yml). We present an exam-
ple of the reuse of FabSim information within this context as part
of the Binding Affinity application described in Section 4.2.

These three pieces of information are then supplied to a trans-
lation service, which merges and converts them into a format
suitable for the optimisation component. Currently, the translation
tool is application specific, and produces two xml files as output.
One file, matrix.xml, is shown in Listing 1 in Appendix A and
contains templated information from the submodel definitions.
The other file, multiscale.xml shown in Listing 2 (Appendix A), has
information from the simulation and middleware parameters.

3.2. Optimisation component

The main software tool within the Optimisation component is
the Pattern-Driven Planner. This tool requires input from both the
Translation service as well as the Node Description List. The node
description list is updated regularly to reflect the current status
of available nodes in the targeted supercomputers, and contains
information of node types. A single node type represents a set of
nearly identical nodes in terms of hardware configuration (e.g. pro-
cessor type). The node types should be defined based on knowl-
edge gathered a priori by the middleware from the infrastructure
provider. Table 1 shows an example of node types.

The second layer contains the Pattern-Driven Planner and the
Performance Estimator components. The Pattern-Driven Planner
component collects measurements and/or predictions of perfor-
mance of submodels, under various execution scenarios, from the
Performance Estimator. Then, it uses this information to compute
required cost functions (e.g efficiency, throughput, energy usage,
or a combination) on available resources. Given the specific MCP
and all other available information, the Pattern-Driven Planner
performs a constrained optimisation against these cost functions,

338 S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

Serial / parallel Serial Ensemble Dynamic ensemble
auxiliary auxiliary simulation simulation
04
B Bs B [Na HMC | A + A +
i i manager \
A B, A nT
‘ / * HMC / v v
BS BS B / manager A2 Az
(a) (b) (c) (d) (e)
Legend
A Cost critical + | Multiple —, Statictask
submodel(s) instances dependency
HMC | On-the-fly
B Other o Relaunch [Manager [database * On demand task
Submodel(s) Itself dependency

Fig. 1. Generic task graphs for the Extreme Scaling computing pattern (a,b), the Heterogeneous Multiscale Computing pattern (c) and the Replica Computing pattern (d,e).
(a) shows the case where the auxiliaries Bp are running in parallel with the primary model A, while in both (a) and (b) auxiliaries Bs are in series with the primary model. In (c)
multiple instances of the cost critical micro submodel (A) are called on-demand by the macro submodel (B). The macro-scale solver requires input from micro-scale solvers

at every time step. (d) shows the case where multiple instances of submodels interact in phases, while in (e) the same operation is shown with addition to a self-relaunch
mechanism.

Description i
(xMML) Submodel definitions
Simulation and middleware parameters FabSim
User information
Translation Service
PR T
1
Execution
QCG Pattern-aware Pattern-Driven Node:dsseription iddiewars
Scheduler Planner
ueue-time .
%stimation Queue-time Energy
. metrics metrics
service
Measurements
/ Architecture
QCG Job Controller Performance Modellin L performance
Estimator measurement
. tool
/ \ \ Single Scale / 00
Performance Models
Site 1 Site 2 sien. | 0+ bl
Optimisation

Fig. 2. Architecture of the Multiscale Computing Patterns software. The dashed-line boxes represent external components (which either exist separately or are under
development).

and provides a selection of particularly suitable execution scenar- The Measurements and Architecture Modelling components re-

ios to the Execution component. The Execution component will
then select the optimal execution plan based on chosen specified
cost criteria (time to completion, energy consumption), by taking
into account additional information only available to the middle-
ware (e.g. estimated queueing time, live information on availability
of resources, etc.).

spectively store and calculate submodel performance information
as a function of the chosen number of cores/nodes and problem
size. The Single Scale Performance Model captures the scalability
of submodels with respect to problem sizes and number of proces-
sors. The Performance Estimator, in turn, relies among others on
the Single Scale Performance Model to obtain, interpolate and/or

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346 339

Table 1

Example of node types, an input to the Pattern-Driven Planner. Note that RAM per
node is in Giga bytes. Processor type 1 Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60 GHz,
2 Intel(R) Xeon(R) CPU E5-2680 @ 2.70 GHz, 3 Intel(R) Xeon(R) CPU E7-4870 @
2.40 GHz and 4 Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz.

Type name # of Processors Cores per RAM per Processor
nodes pernode node node type

Host Type
haswell_64 492 64

Eagle haswell_128 460 2 28 128 (1)
haswell_256 52 256

supermuc TN 9216 2 16 32)

p Fat 205 4 40 256 (3)
Stfc Default 118 2 16 64 (4)

calculate performance results for the multiscale model. For exam-
ple, this could be achieved by interpolating between performance
results of adjacent problem sizes in the multiscale model and/or,
relying on performance models, to predict the performance using
a core count for which no measured values have yet been obtained.

In the Measurements component, the overall cost of the sub-
model as a function of problem size is measured for 1 to n cores on
the first node in a specific node type, and for 2 to N nodes assuming
full occupancy on each node for a given number of iterations. In
the baseline case, the cost is represented as execution time, but
note that these calculations can also be done for other metrics of
cost such as energy. The actual measurements can be obtained
from tools designed specifically for performance profiling tools,
such as Allinea MAP [27], the tool of choice in our research. A
template of measurements is shown in Listing 3 in Appendix A;
this measurement listing might contain specially marked values
(i.e NA), for node types where a specific single scale model is not
supported.

The Architecture Modelling software is established to provide
predictions for existing machines, but also for non-existing emerg-
ing exascale configurations. This allows users to assess how MCPs
could optimally benefit from such hypothetical machines, or con-
tribute in co-evolution of such new architectures.

Based on performance results from the Performance Estimator,
the Pattern-Driven Planner groups types of nodes into classes
depending on the similarity of performance figures, type of com-
puting pattern and cost criteria (e.g efficiency, makespan time,
energy usage, resource usage, ...) computed as cost function. Then,
using multi-objective optimisation, the tool will generate a small
number of alternative execution scenarios. The importance of the
alternatives here is to give the Execution component the freedom
to choose from a set of resources with comparable performance
per submodel depending on the availability of these resources as
well as on the variation in queue times. We will enhance this com-
ponent to extend the patterns with capabilities to also consider
issues related to energy awareness and fault-tolerance. All in all, for
each pattern we will formulate constrained optimisation problems
that as output will deliver alternative execution profiles to the
Execution component.

The exact output of the Pattern-Driven Planner to the Execution
component will be several allocation plans and other require-
ments, as described in the next section, to run multiscale appli-
cation. Here, the output file holds information about the kernels
and corresponding helpers, the classes of node types and a set of
allocation plan. The allocation plan is a specific mapping of the
multiscale model to resources. Listing 4 in Appendix A shows the
template of the node classes and allocation plans parts.

3.3. Resource allocation and execution component

The responsibility for the execution component is twofold. First,
it needs to select the best allocation plan from the plans provided

by the optimisation component. The selection pertains to the map-
ping of computational kernels to a specific set of physical resources
of defined types, taking into account the (sometimes conflicting)
requirements of users and resource providers. Second, once an
optimal plan has been selected, this component needs to ensure
the efficient and reliable execution of the application within the
distributed heterogeneous infrastructure.

The execution component is mainly provisioned using the QCG
environment? [24], a mature middleware system deployed in
many HPC centres across Europe. QCG delivers a set of ready to
use components that can be installed and managed at each site,
irrespective of the internal policies or local queueing systems.
To fulfil expectations and objectives of both users and resource
providers, QCG features and extendable brokering service which
allows for customised brokering algorithms and strategies. In ad-
dition, QCG provides support for advance reservation, co-allocation
and workflows, enabling the execution management of multi-
kernel applications, with both cyclic and acyclic dependencies, on
a distributed e-Infrastructure [20,21].

Deploying multiscale simulations on production e-infra-
structures gives rise to a number of challenges that are difficult to
anticipate prior to the execution component. For example, the user
objective for an immediate job start, e.g. through means of advance
reservation, needs to be harmonised with the provider’s objective
for high resource utilisation. In addition, the Pattern Driven Planner
provides plans that are likely to be optimal from a user perspective,
but have not yet incorporated the constraints imposed by the
presence of other workloads in the e-infrastructure environment.

The QCG Pattern-aware Scheduler (which is part of QCG Bro-
ker) calculates which of the plans provided by the Pattern Driven
Planner is optimal with respect to the objectives of all involved
stakeholders. In doing so it takes into account the current and
historical load on e-infrastructure resources, including both the oc-
cupancy of the actual resources and the queue lengths. The Pattern-
aware Scheduler can perform this optimisation with respect to
required cost criteria, either a single time to completion criterion
or a combination of two criteria, total energy expenditure and time
to completion. Here, the time to completion is calculated by adding
the predicted queueing time (predicted by Queue Time Prediction
Service to QCG) and execution time (provided by the optimisation
component). In the energy optimisation case, QCG Scheduler firstly
selects a set of candidate plans which finish according to the QCG
time to completion prediction in the requested period of time
and then it selects an optimal plan with the minimal total energy
expenditure (calculated and given by the optimisation compo-
nent). Through its direct integration with the QCG environment,
the Pattern-aware Scheduler accounts for the multi-kernel nature
of multiscale application and the fact that each kernel may behave
differently in the context of performance and energy-usage when
executed on different resource types [26,28,29].

The QCG Pattern-aware Scheduler relies on a plugin-like archi-
tecture to gather all required information (see dashed boxes in
the Execution component of Fig. 2). For example, the scheduler
uses the Queue time metrics plug-in to get precise knowledge about
the expected queue time on available resources. This plug-in is
integrated with external resource-level components, in this case
the Queue-time Estimation service. Similarly, we are planning to
implement an Energy metrics plug-in and combine it with the QCG
Pattern-aware scheduler.

As the new brokering module uses new types of input parame-
ters to specify the requirements of the MCPs, we have extended the
job description interface and revised several internal schemas used
to exchange information between the components in QCG-Broker
service. We present several key fragments of the this extended

2 www.qoscosgrid.org.

http://www.qoscosgrid.org

340 S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

Table 2
Resources used for the measurements in Sections 4.1 and 4.2.
Resource CPU architecture Cores
SuperMuc Intel(R) Xeon(R) CPU E5-2680 147 456
p Intel(R) Xeon(R) CPU E7-4870 8200
Eagle Intel(R) Xeon(R) CPU E5-2697 v3 2408

description in Appendix F. Here, all jobs described using a pat-
ternTopology element will be processed using the new scheduling
engine.

Based on the result of the QCG Pattern-aware Scheduler, the
QCG Job Controller module prepares the execution environment by
transferring input data and starting the job submission to one or
more distributed resources. The resources in our e-infrastructure
are made accessible to QCG Job Controller using services imple-
menting the Basic Execution Service (BES) interface [30].

QCG Job Controller contains a set of specific adaptations to ad-
dress the requirements for efficiently executing high performance
multiscale simulations using high-end e-Infrastructures. Both the
QCG-Broker interface and the core capabilities of the service com-
ponents have been extended to support a range of pattern-based
multiscale jobs. Specifically, to allow efficient execution of the
Replica Computing Pattern applications, we have incorporated two
additional QCG mechanisms: workflows and job arrays. We incor-
porated a modified version of existing workflow mechanisms [31],
eliminating the need to transfer data between subsequent tasks
executed on the same resource, and simplifying the execution of
workflows in parameter sweep tasks. The job arrays functionality
allows a set of independent tasks to be run on a resource and be
considered as a single QCG task. In the Replica Computing Pattern
these sets of subtasks can be scheduled by the middleware to be
executed on various clusters, thereby balancing the overall load on
the infrastructure. Job arrays not only help to reduce the manage-
ment complexity of all tasks executed separately, but increase the
overall throughput of the system and decreases the total time to
completion of a simulation.

4. Applications of the multiscale computing patterns software

In this section, we present three exemplar applications from
different scientific domains (one from Fusion research and two
from biomedicine, being cell based blood flow modelling and the
Binding Affinity Calculator BAC) to demonstrate the capabilities
practical usage of the MCP software, and the benefits in terms of
application performance. Our applications are mapped to two dif-
ferent computing patterns, with Fusion and cell based blood flow
modelling mapped to the Extreme Scaling (ES) pattern and BAC
to the Replica Computing (RC) pattern. Applications for HMC are
currently under development. In addition, details of the required
steps and various code snippets at each level of the software stack
are presented from the perspective of the application developer. All
performance figures presented are measured at two supercomput-
ers that participated in the studies, namely SuperMUC [32] (Tier-
0 HPC from Leibniz-Rechenzentrum, Germany), and Eagle [33]
(Polish national grid clusters from Poznan Supercomputing and
Network Center, Poland). Further details are listed in Table 2.

4.1. Extreme scaling

In ES, the ultimate goal is to ensure minimal interference be-
tween the primary model and the auxiliaries. It may happen (as
in the example of the cell based blood flow simulation) that the
auxiliary models induce large waiting times for the primary model,
thus potentially wasting resources and reducing resource usage.
The Multiscale Computing Patterns software detects this situation

automatically, and then interleaves two multiscale simulations,
executing both at the same time [23]. This mechanism would
increase the resource usage efficiency. For ES, the efficiency of the
multiscale model €y, can be calculated as [23]:

€p
M= ToP) | 1 (1)
Tpr(P) + 1
and the resource usage efficiency (R) as:
T:P:
R= 2ilili)
T Zi P;

where P; is the number of cores used for submodel i, T; is the
execution time on submodel i excluding waiting times, T is the
total execution time including waiting times, and ¢p the efficiency
of the primary model.

Fusion application

Nuclear fusion has the potential to produce clean and carbon-
free energy, as physicists hope to demonstrate with ITER, which
is a tokamak device that uses magnetic fields to confine plasma.
However, the grand challenge of long-term plasma confinement
requires the understanding of interactions between very small-
scale turbulence and large scale plasma behaviour [9,34]. There-
fore, having a robust multiscale computing scheme to study this in-
teraction has become a vital goal in the fusion community. Our tar-
geted fusion application simulates the time evolution of a plasma’s
1D profiles (for instance electron temperature) in the tokamak core
with a transport code, while under the influence of anomalous
transport coefficients computed by a 3D turbulence code and peri-
odic 2D equilibrium reconstruction [34]. The transport, turbulence,
and equilibrium codes are submodels developed separately and
are well-benchmarked. These submodels share a common data
interface and are embedded into MUSCLE2 as kernels, which allows
for straightforward coupling through a simple and configurable
script as described in [9]. Such simulation is essentially multiscale
in time, and corresponds to the ES computing pattern depicted in
Fig. 1(b). The turbulence code is the primary submodel in this ap-
plication because it requires the vast majority of the computational
power compared to the other submodels.

The starting point in the description component of the software
is to compose a task graph in xXMML format. This text file (shown
in Appendix B) contains the list of submodels involved, time and
space scales and input/output data of each submodel, and coupling
between submodel pairs through their respective input/output
data. If desired, the user can deploy the jMML tool [20] to generate
the task graph from the XMML [2] (displayed in Appendix D).
Besides visual representations, the jMML tool can turn the content
from a task graph into a skeleton configuration for MUSCLE2. The
designer of the coupled application can implement submodels as
MUSCLE2 kernels and other simulation parameters (either global
or specific to a kernel) into the MUSCLE2 configuration file [20].
An example of the fusion application’s configuration file, which
is written as a ruby script, is displayed in Appendix C. Note that
at this stage, the user can directly connect to a cluster where all
executables, libraries and input data are present, and write an
ad-hoc script to be submitted to the local batch queue system.
However, the burden of manually adjusting the configuration and
selecting the optimal cluster lies on the user every time wants to
run a simulation. The MCP software has features that relieve these
burdens from the user by automatically selecting the best configu-
ration for a given performance metric, as described in further detail
in the remainder of this subsection.

The task graph is submitted and parsed by the Translation
service along with other specifics provided by the developer, such

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346 341

e—e thin nodes in SuperMUC
e—e haswell_128 in Eagle

23

Number of cores

Fig. 3. Runtime on different resources for one iteration of the primary submodel in
the fusion application.

Table 3

Performance for ES applications, namely Fusion and cell based blood flow modelling
(RBC). T is the execution time (excluding waiting times) for primary (Pr) and
auxiliaries (aux) on Pp. and Pg,, number of cores in seconds, € is the efficiency for
the primary (Pr) and the multiscale model (M) and R is the resource usage.

Simulation Host Po T (S) Paux Taux (S) €pr n R

Fusion SuperMuc 1024 49017 1 780 1.0618 0.9774 091
RBC Eagle 1036 1936.7 168 1531.6 0.7066 0.3946 0.367
RBCy¢ Eagle 1036 3081.34 168 3081.34 0.7066 0.3954 0.746

as additional submodel definitions, details on middleware, simula-
tion parameters, and user information. In the current implementa-
tion, the Translation service is a python script which, as a result,
creates two template xml files: matrix.xml and multiscale.xml.
Matrix.xml contains information related to single scale submod-
els, such as measurements of their performance. An example of
benchmark data on scaling of the primary submodel for two types
of nodes is shown in Fig. 3. Multiscale.xml contains information
related to the coupled application. These two templates are pre-
filled with information from the xMM.L file and can be completed
by the application designer. An example is given in Appendix E.

Next, the outputs of the Translation service (matrix.xml and
multiscale.xml) are passed on to the Pattern-Driven Planner, which
in turn generates an XML job script for the selected middleware
(the QCG). Currently, the Pattern-Driven Planner proposes three
optimal plans that minimise the cost, and an example of such plans
is shown in Appendix F. Currently, these plans are drafted based on
the measurements of runs performed manually by the application
designer. The next stage will be to enhance the Performance Es-
timator such that it can benchmark on-the-fly and interpolate on
settings for which no performance data is available.

Finally, the job script from the Pattern-Driven Planner is sub-
mitted to the QCG. QCG selects one of three plans and starts the
simulation on the system(s) involved. For the fusion application,
and in general for most ES applications, it is more sensible to select
a plan in which all submodels run on a single site, for auxiliaries do
not require much resources. In that case, we should only care about
serialisation due to serial auxiliary models and how that could im-
pact the execution [23]. Also note that the speedup of the primary
model is super-linear because the efficiency was calculated with
64 cores instead of one core, which may lead to latency hiding.
For fusion, the time of the primary model spent in waiting for the
auxiliaries is not that large, as shown in Table 3, so no additional
actions are required, and, therefore, the resource usage is high.

In particular, QCG selects the thin nodes in SuperMUC to run
the fusion simulation (see Table 3). A production run with 1000
iterations using 2048 cores was completed successfully using the

software scheme described earlier. The entire run was completed
in approximately 11.1 h, or 22733 core hours. Among the three
submodels, the primary submodel (a turbulence code based on
gyrofluid theory) took about 17 s per iteration, while the transport
and equilibrium auxiliary submodels took 1 and 3 s, respectively.
However, the fusion plasma in this particular example needs ap-
proximately 4000 iterations to reach equilibrium state. Therefore,
improving efficiency becomes essential as future simulations re-
quire more computing time. The current simulation couples the
submodels in series. One way to speed-up the simulation is to
run auxiliary submodels in parallel when possible, which is the-
oretically the case for the timescale-less equilibrium submodel.
This idea is preliminary and its validation is necessary before such
transformation is added as a possible optimisation technique in the
Pattern-Driven Planner.

The ultimate goal for the fusion application is to use a more
sophisticated turbulence model, namely replacing the gyrofluid
model with a gyrokinetic model, to simulate plasma in the core
of a tokamak. In addition, the ability to simulate plasma of a much
larger volume would be necessary to understand possible instabil-
ities that could destroy plasma confinement in the ITER tokamak.
These goals require an extensive amount of computing resources,
as well as intelligent and highly optimised coupling approaches.
The Multiscale Computing Patterns software have demonstrated
initial success with a smaller-scale problem. With further im-
provements, we envision that these patterns can efficiently handle
future exascale calculations involving ITER and gyrokinetic simu-
lations.

Cell based blood flow simulation

In this application we couple continuous blood flow simula-
tions implemented in Palabos [35] (a fully parallelised open source
Lattice Boltzmann Model) to cell based blood flow simulations
implemented in the Hemocell suspension simulation framework
(an Immersed Boundary Lattice Boltzmann Model (IB-LBM)) [36-
39]. Specifically, we couple two continuous fluid fields (C; and Cg,
which are serial auxiliary models) to the inlet and outlet of Hemo-
Cell, in order to provide the correct in- and outflow conditions to
the more expensive suspension simulation (P, the primary model
in this application), and to keep the domain for the cell based
blood flow simulation as small as possible. This application has also
been coupled using MUSCLE2. The performance measurements are
shown in Fig. 4. As is clear, in this case the auxiliary models (C,
and Cg) require a small amount of computing and only execute
on a small core count. However, the primary model, HemoCell,
is compute hungry, but at the same time scales very well to a
much larger core count, even so that the execution time of the
primary becomes comparable to the execution time of the auxiliary
submodels. This situation was analysed in [23] and calls for a more
advanced scheduling of the pattern, basically interleaving two
instantiations in order to make best use of the available computing
resources. The MCP software is able to orchestrate such more
advanced scheduling of multiscale applications.

Table 3 shows that the resource usage for running this ap-
plication is 0.35. This is due to the large waiting times of both
primary and serial auxiliaries in the naive scheduling, which means
wasting 1122 cores hours (1.08 h per core) for primary and 1755
(12.5 h per core) for auxiliary models by doing nothing but wait-
ing. To solve this, we interleave two different instantiations with
each other, as proposed in [23]. This mechanism was coordinated
using wait/notify semantics [10]. By doing so, we doubled the
resource usage efficiency by reducing the wasted cores to 887 and
152 core hours for primary and auxiliaries models respectively.
By implementing more advanced load balancing algorithms and
selecting the right number of cores for the primary and auxiliary
models, we can increase the resource usage efficiency even more.
We are currently realising such more advanced features of the MCP
software.

342 S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

9000 420
8000 [R
400 |
7000 R
6000 - R 380 |k
@ 5000 | R
@ 360
€
£ 4000 |- R
3000 R 340 |
2000 R
320}
1000 | R
02" 25 z‘6 37 2‘8 2‘9 210 3002“

e—e Suspension Simulation P
e—e Continuous flow Cp,
|| m—= Continuous flow C

Number of cores

2° 26

Number of cores

Fig. 4. Total runtime of cell based blood flow modelling submodels on Eagle [33] haswell_128 nodes. Note the difference in scale between the primary suspension model

(left) and the auxiliaries continuous flow models (right).

4.2. Replica computing (binding affinity calculator)

The procedure for replica computing is similar to that for Ex-
treme Scaling (Section 4.1). The starting point for all RC pattern
applications is the task graph, via an XMML textual description. A
“multiplicity” tag in the “instance” node of the xMML description
indicates that multiple instances (replicas) are required for that
submodel. The Translation service detects the presence of this
tag, identifies that the RC pattern is required and that the associ-
ated cost function in the Multiscale Computing Patterns software
should be invoked.

The Translation service uses submodel definitions in separate
files. To illustrate this, we describe the process for the Binding
Affinity Calculator (BAC) [40], an automated molecular simula-
tion based free energy calculation workflow tool, which we use
to calculate ligand-protein binding affinities. Rapid and accurate
calculation of binding free energies is of major concern in drug
discovery and personalised medicine. The underlying computa-
tional method is based on classical molecular dynamics (MD).
These MD simulations are coupled to the molecular mechanics
Poisson-Boltzmann surface area (MMPBSA) method to calculate
the binding free energies. For purposes of reliability, ensembles of
replica MD calculations are performed for each method, and we
have found that about 25 of these are required per MD simulation
in order to guarantee reproducibility of predictions. This is due
to the intrinsic sensitivity of MD to the initial conditions, since
the dynamics is chaotic. Therefore, BAC is an ideal example of
the replica computing pattern. BAC consists of a workflow where,
within each replica, the output from one submodel (NAMD) is used
as input to the next submodel (AmberTools). For more information,
we refer to [40,41].

BAC previously used the FabSim [25] tool extensively to per-
form simulation runs and, therefore, we have added an option to
the Translation service to allow the matrix.xml and multiscale.xml
files to be completed (as much as possible) through reading of Fab-
Sim configuration files. This demonstrates the potential versatility
of our MCP approach, which should enable relatively straightfor-
ward integration with existing multiscale execution environment
as, in this case, FabSim. For example, it uses the machines.yml con-
figuration file from FabSim, which lists the configuration settings
of submodels on remote resources (e.g., location of libraries and
required execution flags). Additional information specific to for
the Translation service (and not required by FabSim) can also be
added to this file, including restrictions on the submodel (GPU/CPU
compatibility, max/min number of cores, etc.). This allows sub-
model information to be reused if it is required for different mul-
tiscale applications. Then, FabSim compatible YaML file (shown
in Appendix G) are used to assist the completion of matrix.xml
and multiscale.xml. BAC currently does not use a coupling library

(such as MUSCLE), so no additional files are required. However,
in the future we foresee hybrid MCPs, where each replica could
for instance be a full-blown ES by itself, and then such additional
information would be needed.

Following the procedure outlined for the ES pattern, the user
passes matrix.xml and multiscale.xml to the Optimisation compo-
nent. Unlike the ES pattern, the user does not need to specify the
required number of cores for the overall simulation. This is decided
by the Performance Estimator by calculating the cost function.

Finding a cost function for RC that will generate resource alloca-
tion plans is different to that for ES. First, there is an obvious trade-
off between the number of replicas that must be executed, the
minimum number of cores that one single replica needs, and the
total number of cores available for the overall job. The performance
data for RC uses the minimum time per replica for different node
types in different hosts, as shown in Fig. 5 for a single BAC replica.
This data is collected in the Single Scale Performance Model. In the
simplest cost-function, where we consider only time to solution, all
replicas would be run concurrently on the node with the shortest
running time per replica. However, there are several constraints
that the Performance Estimator must also consider such as queue
constraints (number of concurrent jobs, time limitations node
availability and queueing time).

Most supercomputers have a limit on the number of jobs that
can be run or queued at any moment in time per user. For example,
on SuperMUC machine, the maximum number of jobs that can be
run concurrently on the thin nodes in the “general” queue is 8,
while there are no restrictions on the Eagle machine.

As an example, if we have two RC applications which require 40
and 80 replicas respectively, the Pattern-Driven Planner needs to
calculate which is faster: running all replicas at one supercomputer
SuperMUC (while taking into account the constraint of concur-
rently running 8 jobs per user) or distributing the jobs among
different hosts, for example, across SuperMUC and Eagle, using the
functionality in QCG to run across multiple resources. To illustrate
how this could be coordinated, let us take the hypothetical situ-
ation that there is also a 12 job limit on concurrent jobs running
on Eagle to mimic the workload. In Fig. 6, we show the time to
completion as a function of the number of “batches” running on
SuperMUC, where a “batch” is defined as a set of 8 concurrent
running jobs on SuperMUC. The remainder of the replicas are run
on Eagle (again in “batches” of up to 12 jobs).

Fig. 6 shows we estimate that for 40 replicas, the shortest time
to completion is for 2 “batches” to be run on SuperMUC, while for
80 replicas, the minimum time to completion is for 4 “batches” to
be run on SuperMUC. This assumes that all replicas take the same
time (the shortest time-to-completion from our benchmarking),
that all the replicas are independent (no communication) and that
each “batch” runs directly after the other. It is clear there is a

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346 343

50000 1.2

1.0
40000
0.8
30000 .
a 2
0] 2 0.6
£ g
= 20000 @
0.4
10000

0.2

0 L L L

e—e thin nodes in SuperMUC
e—e fat nodes in SuperMUC
e—e haswell nodes in SuperMUC
@0 haswell_128 in Eagle

L
26 27 28 29 210 211
Number of cores

0'0 L L L L L L L L L L
20212223 24252627 282921011
Number of cores

Fig. 5. Time and efficiency per replica (NAMD kernel) on different number of cores on different node types.

le3

=
IS

iy
N

=
=}

o
o

°
IS

80 replicas
‘ ‘ o—e 40 replicas

4 6 8 10
Number of batches on SuperMUC

Predicted time to completion (minutes)
=}
o

©
[N)

o
N

Fig. 6. Theoretical time of running multi-replicas simulations across 2 resources
(SuperMUC and Eagle), as a function of number of “batches” (i.e. sets of 8 concurrent
jobs) on SuperMUC. The remainder of the replicas are run as batches of up to 12
concurrent jobs on eagle.

limitation to this model; it will only be realistic if the time spent
in the queue is very short. Otherwise, the time to completion
could be very different to that predicted in Fig. 6, and we could
envisage the most efficient split in replicas across resources being
completely changed if the queueing times are very different across
the resources. The estimation of queueing time will be investigated
and to incorporated into the middleware in the future (as described
in Section 3.3).

The output file description to the execution component is uni-
fied among all computing patterns as described in Section 3.3. QCG
also have the ability to distribute replicas to the intended machines
and gather the results in one place. Fig. 7 shows timings of test BAC
runs. In these studies, we run 10 replicas across two supercomput-
ers, SuperMUC and Eagle. By running 8 replicas on SuperMUC and
the rest on Eagle we reach the least time-to-completion.

To quantify this speedup [42], we would compare the best
timing of distributing replicas Ty with the best timing of run-
ning them on SuperMUC (with batch time) Tj,.q . The speedup is
calculated as:

Tlocal

S= ,
Tdistr

and the speedup is 1.2 for our set of studies. This means that

at the moment of running this set of replicas, we would gain a

Eagle

10 8 6 4 2 0
700 T T T T

600

500

400

300

Time (min)

200

100

Supermuc

Fig. 7. Time to completion of multi-replicas simulations across 2 resources (Su-
perMUC and Eagle), as a function of number of replicas, ten in total, distributed on
SuperMUC and Eagle.

Table 4
Performance model for RC application, namely BAC. N is the total number of
replicas, Pg is the number of cores per replica, Ty is the Time per replica in seconds,
Tiocar and Tyisr are the shortest total simulation time (including queueing times) for
alocal and a distributed runs and S is the Speedup.

Simulation N Pr Tr (S) Tiocat (S) Taiser (S) S

BAC 10 10 20 29 24 1.208

speedup due to the varied queuing time. The queueing time will
be predicted and hosts will be automatically selected by QCG based
on the knowledge of run time and queueing time as stated before.
Table 4 summarises the results from the BAC application for time-
to-completion runs in Fig. 7.

5. Discussion and conclusions

We have introduced and described the Multiscale Comput-
ing Patterns software, which extends the Multiscale Modelling
and Simulation Framework to enable high performance multiscale
computing based on three generic patterns. We demonstrated
its usage and added-value for three different types of multiscale
applications: fusion and cell based blood flow simulation, both
as examples of Extreme Scaling, and binding affinity calculation
as an example for Replica Computing. In addition, these multi-
scale models are based on different coupling approaches, including

344

MUSCLEZ2, as well as coupling using scripts and the FabSim automa-
tion toolkit.

We implemented and demonstrated the Extreme Scaling and
Replica Computing computing patterns. The third computing pat-
tern, Heterogeneous Multiscale Computing, will be implemented,
discussed and demonstrated in future work. In the current imple-
mentation, each of the demonstrated applications highlights spe-
cific strengths of our software approach. For the fusion application,
the software abstracts the complication of HPC and chooses the
most appropriate number of cores to obtain the required cost crite-
ria (i.e. time to completion). For blood flow, our approach enabled
the use of double the resources otherwise accessible. Lastly, for
binding affinity calculations, our approach serves to abstract away
the choice as to whether the replicas should all run on one and the
same computer or be distributed across multiple computers. This
automated scheduling approach, which recommends execution
across two resources, delivers a time-to-completion speedup of 1.2
compared to the scheduling of all replicas on a single resource.

The Multiscale Computing Patterns software maintains a sep-
aration of concerns in three areas. The top layer, the Description
component, represents the logical description of the multiscale
model. This is the part that is most ‘visible’ to the application
users and developers. The Optimisation component is focused on
performance aspects, and provides a number of optimisation cri-
terion based on the type of the multiscale computing pattern and
the required criteria. Finally, the Execution component integrates
a range of functionalities from the underlying e-infrastructure,
and uses the information from the Description and Optimisation
components to create and run execution scenarios, each optimised
either for minimal time to completion, or minimal energy con-
sumption (given a fixed time to completion requirement). This
modular implementation helps multiscale model developers to
concentrate on optimising the single scale models of which the
application is comprised, without needing to go into details about
the HPC machines. The developer can choose the optimisation
criteria required.

In this work, we have assembled a range of powerful func-
tionalities for optimising and deploying multiscale applications on
large scale HPC infrastructures operating at the multi-petascale,
and presented an application-agnostic approach which reduces
the development effort required for these purposes. We plan to
release the software described here shortly. Generic approaches
to High Performance Multiscale Computing are highly sought after
across scientific disciplines, and indeed we have already begun
propagating the first elements of our approach to other application
domains such as astrophysics and materials modelling.

Acknowledgements

We acknowledge partial funding from the European Union
Horizon 2020 research and innovation programme under grant
agreement No 671564 for the ComPat project (http://www.compat-
project.eu/). SA acknowledges funding from King Abdulaziz City for
Science and Technology (KACST), Saudi Arabia. AGH acknowledges
partial financial support from the Russian Scientific Foundation via
grant #14-11-00826. P.V.C. thanks the MRC Medical Bioinformatics
project (MR/L0O16311/1), the EU H2020 CompBioMed grant (http:
//[www.compbiomed.eu, Grant No. 675451) and funding from the
UCL Provost. This research was also supported in part by the PLGrid
Infrastructure including dedicated HPC resources at the Poznan
Supercomputing and Networking Center.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.future.2018.08.045.

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

References

[

[2

3

[4

5

[6

[7

8

[9

[10]

[11]

[12]
(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

A.G. Hoekstra, B. Chopard, P.V. Coveney, Multiscale modelling and simula-
tion: a position paper, Philos. Trans. Ser. A Math. Phys. Eng. Sci. 372 (2014)
20130377.

A.G.Hoekstra, E. Lorenz, J.-L. Falcone, B. Chopard, Toward a complex automata
formalism for multiscale modeling, Int. . Multiscale Comput. Eng. 5 (6) (2007)
491-502.

B. Chopard,]. Borgdorff, A.G. Hoekstra, A framework for multi-scale mod-
elling, Phil. Trans. R. Soc. A 372 (2014) 20130378.

J. Borgdorff,].L. Falcone, E. Lorenz, C. Bona-Casas, B. Chopard, A.G. Hoekstra,
Foundations of distributed multiscale computing: Formalization, specifica-
tion, and analysis,]. Parallel Distrib. Comput. 73 (4) (2013) 465-483.

D. Groen, SJ. Zasada, P.V. Coveney, Survey of multiscale and multiphysics
applications and communities, Comput. Sci. Eng. 16 (2) (2014) 34-43.

H. Tahir, C. Bona-Casas, AJ. Narracott,]J. Igbal, J. Gunn, P. Lawford, A.G.
Hoekstra, Endothelial repair process and its relevance to longitudinal neoin-
timal tissue patterns: comparing histology with in silico modelling,]. R. Soc.
Interface / R. Soc. 11 (94) (2014) 20140022.

D. Groen, J. Borgdorff, C. Bona-Casas,]. Hetherington, RW. Nash, S,J. Za-
sada, I. Saverchenko, M. Mamonski, K. Kurowski, M.O. Bernabeu, a. G. Hoek-
stra, P.V. Coveney, Flexible composition and execution of high performance,
high fidelity multiscale biomedical simulations, Interface Focus 3 (2) (2013)
20120087.

A.G. Hoekstra, S. Alowayyed, E. Lorenz, N. Melnikova, L. Mountrakis, B. van
Rooij, A. Svitenkov, G. Zavodszky, P. Zun, Towards the virtual artery: a
multiscale model for vascular physiology at the physics-chemistry-biology
interface, Phil. Trans. R. Soc. A 374 (2080) (2016) 20160146.

0. Hoenen, L. Fazendeiro, B.D. Scott,]. Borgdorff, A.G. Hoekstra, P. Strand,
D.P. Coster, Designing and running turbulence transport simulations using a
distributed multiscale computing approach, in: EPS 2013, Europhysics Con-
ference Abstracts, Vol. 37D, no. 37, 2013, pp. P4.155.

J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O.
Hoenen, a. Mizeranschi, J.L. Suter, D. Coster, P.V. Coveney, W. Dubitzky,
A.G. Hoekstra, P. Strand, B. Chopard, Performance of distributed multiscale
simulations, Phil. Trans. R. Soc. A 372 (2014) 20130407.

J.L. Suter, D. Groen, P.V. Coveney, Chemically specific multiscale modeling
of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-
assembly and emergent materials properties, Adv. Mater. 27 (6) (2015) 966—
984.

DJ. Hill, Nuclear energy for the future, Nature Mater. 7 (9) (2008) 680.

R. Delgado-Buscalioni, P.V. Coveney, Continuum-particle hybrid coupling for
mass, momentum, and energy transfers in unsteady fluid flow, Phys. Rev. E
67 (4) (2003) 46704.

S.P. Zwart, S. McMillan, A. van Elteren, I. Pelupessy, N. de Vries, Multi-physics
simulations using a hierarchical interchangeable software interface, Comput.
Phys. Comm. 184 (3) (2013) 456-468.

S. Valcke, The OASIS3 coupler: a European climate modelling community
software, Geosci. Model Dev. 6 (2) (2013) 373.

D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandie, MOOSE: A parallel
computational framework for coupled systems of nonlinear equations, Nucl.
Eng. Des. 239 (10) (2009) 1768-1778.

P.M.A. Sloot, A.G. Hoekstra, Multi-scale modelling in computational
biomedicine, Brief. Bioinform. 11 (1) (2009) 142-152.

A.G. Hoekstra, E. Lorenz, J.-L. Falcone, B. Chopard, Towards a complex au-
tomata framework for multi-scale modeling: Formalism and the scale sep-
aration map, in: Y. Shi, G.D. van Albada, J. Dongarra, P.M.A. Sloot (Eds.), Com-
putational Science-ICCS 2007, Springer Berlin Heidelberg, Berlin, Heidelberg,
2007, pp. 922-930.

A.G. Hoekstra, A. Caiazzo, E. Lorenz,].-L. Falcone, B. Chopard, Complex au-
tomata: multi-scale modeling with coupled cellular automata, Simul. Com-
plex Syst. Cell. Autom. (2010) 29-57.

J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B.
Chopard, D. Groen, P.V. Coveney, A.G. Hoekstra, Distributed multiscale com-
puting with MUSCLE 2, the multiscale coupling library and environment, J.
Comput. Sci. 5 (5) (2014) 719-731.

T. Piontek, B. Bosak, M. Ciznicki, P. Grabowski, P. Kopta, M. Kulczewski, D.
Szejnfeld, K. Kurowski, Development of science gateways using QCG-lessons
learned from the deployment on large scale distributed and HPC infrastruc-
tures, J. Grid Comput. 14 (4) (2016) 559-573.

J. Knap, C.E. Spear, O. Borodin, K.W. Leiter, Advancing a distributed multi-scale
computing framework for large-scale high-throughput discovery in materials
science, Nanotechnology 26 (43) (2015) 434004.

S. Alowayyed, D. Groen, P.V. Coveney, A.G. Hoekstra, Multiscale computing in
the exascale era,]. Comput. Sci. 22 (2017) 15-25.

B. Bosak, P. Kopta, K. Kurowski, T. Piontek, M. Mamoriski, New QosCosGrid
middleware capabilities and its integration with European e-infrastructure,
in: eScience on Distributed Computing Infrastructure, Springer, 2014, pp. 34-
53.

http://www.compat-project.eu/
http://www.compat-project.eu/
http://www.compat-project.eu/
http://www.compbiomed.eu
http://www.compbiomed.eu
http://www.compbiomed.eu
https://doi.org/10.1016/j.future.2018.08.045
http://refhub.elsevier.com/S0167-739X(18)30066-9/b1
http://refhub.elsevier.com/S0167-739X(18)30066-9/b1
http://refhub.elsevier.com/S0167-739X(18)30066-9/b1
http://refhub.elsevier.com/S0167-739X(18)30066-9/b1
http://refhub.elsevier.com/S0167-739X(18)30066-9/b1
http://refhub.elsevier.com/S0167-739X(18)30066-9/b2
http://refhub.elsevier.com/S0167-739X(18)30066-9/b2
http://refhub.elsevier.com/S0167-739X(18)30066-9/b2
http://refhub.elsevier.com/S0167-739X(18)30066-9/b2
http://refhub.elsevier.com/S0167-739X(18)30066-9/b2
http://refhub.elsevier.com/S0167-739X(18)30066-9/b3
http://refhub.elsevier.com/S0167-739X(18)30066-9/b3
http://refhub.elsevier.com/S0167-739X(18)30066-9/b3
http://refhub.elsevier.com/S0167-739X(18)30066-9/b4
http://refhub.elsevier.com/S0167-739X(18)30066-9/b4
http://refhub.elsevier.com/S0167-739X(18)30066-9/b4
http://refhub.elsevier.com/S0167-739X(18)30066-9/b4
http://refhub.elsevier.com/S0167-739X(18)30066-9/b4
http://refhub.elsevier.com/S0167-739X(18)30066-9/b5
http://refhub.elsevier.com/S0167-739X(18)30066-9/b5
http://refhub.elsevier.com/S0167-739X(18)30066-9/b5
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b6
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b7
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b8
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b10
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b11
http://refhub.elsevier.com/S0167-739X(18)30066-9/b12
http://refhub.elsevier.com/S0167-739X(18)30066-9/b13
http://refhub.elsevier.com/S0167-739X(18)30066-9/b13
http://refhub.elsevier.com/S0167-739X(18)30066-9/b13
http://refhub.elsevier.com/S0167-739X(18)30066-9/b13
http://refhub.elsevier.com/S0167-739X(18)30066-9/b13
http://refhub.elsevier.com/S0167-739X(18)30066-9/b14
http://refhub.elsevier.com/S0167-739X(18)30066-9/b14
http://refhub.elsevier.com/S0167-739X(18)30066-9/b14
http://refhub.elsevier.com/S0167-739X(18)30066-9/b14
http://refhub.elsevier.com/S0167-739X(18)30066-9/b14
http://refhub.elsevier.com/S0167-739X(18)30066-9/b15
http://refhub.elsevier.com/S0167-739X(18)30066-9/b15
http://refhub.elsevier.com/S0167-739X(18)30066-9/b15
http://refhub.elsevier.com/S0167-739X(18)30066-9/b16
http://refhub.elsevier.com/S0167-739X(18)30066-9/b16
http://refhub.elsevier.com/S0167-739X(18)30066-9/b16
http://refhub.elsevier.com/S0167-739X(18)30066-9/b16
http://refhub.elsevier.com/S0167-739X(18)30066-9/b16
http://refhub.elsevier.com/S0167-739X(18)30066-9/b17
http://refhub.elsevier.com/S0167-739X(18)30066-9/b17
http://refhub.elsevier.com/S0167-739X(18)30066-9/b17
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b18
http://refhub.elsevier.com/S0167-739X(18)30066-9/b19
http://refhub.elsevier.com/S0167-739X(18)30066-9/b19
http://refhub.elsevier.com/S0167-739X(18)30066-9/b19
http://refhub.elsevier.com/S0167-739X(18)30066-9/b19
http://refhub.elsevier.com/S0167-739X(18)30066-9/b19
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b20
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b21
http://refhub.elsevier.com/S0167-739X(18)30066-9/b22
http://refhub.elsevier.com/S0167-739X(18)30066-9/b22
http://refhub.elsevier.com/S0167-739X(18)30066-9/b22
http://refhub.elsevier.com/S0167-739X(18)30066-9/b22
http://refhub.elsevier.com/S0167-739X(18)30066-9/b22
http://refhub.elsevier.com/S0167-739X(18)30066-9/b23
http://refhub.elsevier.com/S0167-739X(18)30066-9/b23
http://refhub.elsevier.com/S0167-739X(18)30066-9/b23
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24
http://refhub.elsevier.com/S0167-739X(18)30066-9/b24

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]
(33]

(34]

[35]
(36]

(371

[38]

[39]

[40]

[41]

[42]

S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346 345

D. Groen, A.P. Bhati,]. Suter, J. Hetherington, S.]. Zasada, P.V. Coveney, FabSim:
facilitating computational research through automation on large-scale and
distributed e-infrastructures, Comput. Phys. Comm. 207 (2016) 375-385.

K. Kurowski, J. Nabrzyski, A. Oleksiak,]. Weglarz, Multicriteria Aspects of Grid
Resource Management, in: International series in Operations Research and
Managment Science, vol. 64, 2003, pp. 271-294.

C. January, J. Byrd, X. Or6, M. O’Connor, Allinea MAP: Adding energy and
OpenMP profiling without increasing overhead, in: Tools for High Perfor-
mance Computing 2014, Springer, 2015, pp. 25-35.

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Weglarz, A multicriteria approach to
two-level hierarchy scheduling in grids, J. Sched. 11 (5) (2008) 371-379.

K. Kurowski, A. Oleksiak, W. Pigtek, T. Piontek, A. Przybyszewski,]. Weglarz,
DCworms-A tool for simulation of energy efficiency in distributed computing
infrastructures, Simul. Model. Pract. Theory 39 (2013) 135-151.

I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles,
D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service version 1.0,
2007.

B. Bosak, J. Komasa, P. Kopta, K. Kurowski, M. Mamoniski, T. Piontek, New ca-
pabilities in QosCosGrid middleware for advanced job management, advance
reservation and co-allocation of computing resources-quantum chemistry
application use case, in: Building a National Distributed e-Infrastructure-PL-
Grid, Springer, 2012, pp. 40-55.

Leibniz-Rechenzentrum, SuperMUC Petascale System. URL https://www.lrz.
de/services/compute/supermuc/.
Poznari-Supercomputing-Networking-Center, Eagle. URL https://wiki.man.
poznan.pl/hpc/index.php/Eagle.

G.L. Falchetto, D. Coster, R. Coelho, B.D. Scott, L. Figini, D. Kalupin, E. Nar-
don, S. Nowak, L.L. Alves, J.F. Artaud, Corrigendum: The European integrated
tokamak modelling (ITM) effort: achievements and first physics results (2014
Nucl. Fusion 54 043018), Nucl. Fusion 54 (9) (2014) 99501.

FlowKit-Ltd, Palabos. URL www.palabos.org.

L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard, A.G. Hoek-
stra, Parallel performance of an IB-LBM suspension simulation framework,
in: International Conference on Computational Science, Elsevier, Reykjavik,
Iceland, 2015, p. 10.

G. Zavodszky, B. van Rooij, V. Azizi, A.G. Hoekstra, Cellular level in-silico
modeling of blood rheology with an improved material model for red blood
cells, Front. Phys. 8 (2017) 563.

HEMOCELL A high-performance framework for dense cellular suspension
flows. URL https://www.hemocell.eu/.

G. Zavodszky, B. van Rooij, V. Azizi, S. Alowayyed, A.G. Hoekstra, Hemocell:
a high-performance microscopic cellular library, Procedia Comput. Sci. 108
(2017) 159-165.

S.K. Sadiq, D. Wright, S.J. Watson, SJ. Zasada, I. Stoica, P.V. Coveney, Au-
tomated molecular simulation based binding affinity calculator for ligand-
bound HIV-1 proteases, 2008.

A.P. Bhati, S. Wan, D.W. Wright, P.V. Coveney, Rapid, accurate, precise, and
reliable relative free energy prediction using ensemble based thermodynamic
integration,]. Chem. Theory Comput. 13 (1) (2017) 210-222.

A.G. Hoekstra, P.M.A. Sloot, Introducing Grid speedup I" : A scalability metric
for parallel applications on the grid, in: P.M.A. Sloot, A.G. Hoekstra, T. Priol, A.
Reinefeld, M. Bubak (Eds.), Advances in Grid Computing - EGC 2005, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 245-254.

Saad A. Alowayyed is a Ph.D. candidate in Computational
Science Lab (CSL) at the University of Amsterdam. His
thesis is concerned with Multiscale computing patterns.
He received his Master in high performance computing
from the University of Edinburgh. Saad also works as
a researcher in King Abdulaziz for Science Technology
(KACST).

Tomasz Piontek graduated from Poznar University of
Technology in Computer Science. He is a member of
Applications Department at Poznar Supercomputing and
Networking Center, Poland and head of the Large Scale
Applications and Services Department. He has been in-
volved in many EU-funded R&D projects in the areas of
distributed and parallel computing, including QosCos-
Grid and MAPPER. His research activities are focused
on the modelling of advanced applications for modern
hybrid HPC architectures, and online services scalability
and availability.

James L. Suter received his M.Chem. from the University
of Oxford and Ph.D. from the University of Cambridge
under the supervision of Professor Michiel Sprik. His re-
search addresses multiscale materials modeling and anal-
ysis of clay and graphene nanocomposites using high-
performance computing.

Olivier Hoenen is a Post Doctoral Research Associate at
the Max-Planck-Institut fuer Plasmaphysik (IPP) in the
Numerical Methods for Plasma Physics Division, special-
ized in parallel computing and adaptive methods. He was
involved in the Infrastructure Project for the ITM-TF, and
in the EU FP7 project EUFORIA. He participated in the
MAPPER project where he was interested in distributed
multiscale simulations for plasma physics. He is involved
in the EUROfusion Infrastructure and Support Activities
where he maintains the integrated modelling and simu-
lation platform and participates to further developments

of the ITER platform IMAS.

supercomputers.

Derek Groen is a Lecturer in Simulation and Modelling
at Brunel University London, and a visiting Lecturer at
University College London. He specializes in multiscale
simulation, high performance computing and automa-
tion, and has published 45 peer-reviewed papers. He
has created multiscale models and performed validation
studies using the HemeLB bloodflow simulation environ-
ment, and won the ARCHER Early Career Impact Award in
2015 as aresult. He obtained his PhD from the University
of Amsterdam in 2010, where he ran large cosmological
simulations geographically distributed across up to four

Onnie Luk is a Ph.D. graduate from the University of
California at Irvine, where she conducted her research
on the role of convective cell in nonlinear interaction of
kinetic Alfven waves. She also has experience in analyz-
ing magnetometer data obtained by the Galileo space-
craft. Currently, she is a post doctoral researcher at the
Max-Planck-Institut fAijr Plasmaphysik. She is part of
the ComPat project, in which she explores time bridging
methods to connect turbulence and transport models in
a component-based multiscale fusion plasma simulation.

Bartosz Bosak received his master’s degree in computer
science in 2007 from Poznari University of Technology in
Poland (Laboaratory of IT Systems in Management). Since
2006 he has been working at the Application Department
of Poznan Supercomputing and Networking Center as
a systems analyst and developer. His research interests
include widely undrestood support for large scale com-
putations on Grid, Cloud and HPC infrastructures, multi-
scale computing as well as system integration. He was a
participant of a variety of European and national projects
including BREIN, MAPPER, ComPat, Geant and PLGrid.

Piotr Kopta received his M.Sc. degree in Computer Sci-
ence from the Technical University of Czestochowa in
2002. Currently he is an systems analyst at the Poznan
Supercomputing and Networking Center. His research
interests concern high performance computing in partic-
ulary new computational architectures.

http://refhub.elsevier.com/S0167-739X(18)30066-9/b25
http://refhub.elsevier.com/S0167-739X(18)30066-9/b25
http://refhub.elsevier.com/S0167-739X(18)30066-9/b25
http://refhub.elsevier.com/S0167-739X(18)30066-9/b25
http://refhub.elsevier.com/S0167-739X(18)30066-9/b25
http://refhub.elsevier.com/S0167-739X(18)30066-9/b26
http://refhub.elsevier.com/S0167-739X(18)30066-9/b26
http://refhub.elsevier.com/S0167-739X(18)30066-9/b26
http://refhub.elsevier.com/S0167-739X(18)30066-9/b26
http://refhub.elsevier.com/S0167-739X(18)30066-9/b26
http://refhub.elsevier.com/S0167-739X(18)30066-9/b27
http://refhub.elsevier.com/S0167-739X(18)30066-9/b27
http://refhub.elsevier.com/S0167-739X(18)30066-9/b27
http://refhub.elsevier.com/S0167-739X(18)30066-9/b27
http://refhub.elsevier.com/S0167-739X(18)30066-9/b27
http://refhub.elsevier.com/S0167-739X(18)30066-9/b28
http://refhub.elsevier.com/S0167-739X(18)30066-9/b28
http://refhub.elsevier.com/S0167-739X(18)30066-9/b28
http://refhub.elsevier.com/S0167-739X(18)30066-9/b29
http://refhub.elsevier.com/S0167-739X(18)30066-9/b29
http://refhub.elsevier.com/S0167-739X(18)30066-9/b29
http://refhub.elsevier.com/S0167-739X(18)30066-9/b29
http://refhub.elsevier.com/S0167-739X(18)30066-9/b29
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
http://refhub.elsevier.com/S0167-739X(18)30066-9/b31
https://www.lrz.de/services/compute/supermuc/
https://www.lrz.de/services/compute/supermuc/
https://www.lrz.de/services/compute/supermuc/
https://wiki.man.poznan.pl/hpc/index.php/Eagle
https://wiki.man.poznan.pl/hpc/index.php/Eagle
https://wiki.man.poznan.pl/hpc/index.php/Eagle
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://refhub.elsevier.com/S0167-739X(18)30066-9/b34
http://www.palabos.org
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b36
http://refhub.elsevier.com/S0167-739X(18)30066-9/b37
http://refhub.elsevier.com/S0167-739X(18)30066-9/b37
http://refhub.elsevier.com/S0167-739X(18)30066-9/b37
http://refhub.elsevier.com/S0167-739X(18)30066-9/b37
http://refhub.elsevier.com/S0167-739X(18)30066-9/b37
https://www.hemocell.eu/
http://refhub.elsevier.com/S0167-739X(18)30066-9/b39
http://refhub.elsevier.com/S0167-739X(18)30066-9/b39
http://refhub.elsevier.com/S0167-739X(18)30066-9/b39
http://refhub.elsevier.com/S0167-739X(18)30066-9/b39
http://refhub.elsevier.com/S0167-739X(18)30066-9/b39
http://refhub.elsevier.com/S0167-739X(18)30066-9/b41
http://refhub.elsevier.com/S0167-739X(18)30066-9/b41
http://refhub.elsevier.com/S0167-739X(18)30066-9/b41
http://refhub.elsevier.com/S0167-739X(18)30066-9/b41
http://refhub.elsevier.com/S0167-739X(18)30066-9/b41
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42
http://refhub.elsevier.com/S0167-739X(18)30066-9/b42

346 S. Alowayyed et al. / Future Generation Computer Systems 91 (2019) 335-346

Krzysztof Kurowski holds a Ph.D. degree in Computer
Science. He graduated from Poznan University of Tech-
nology. He has been leading Applications Department
at Poznan Supercomputing and Networking Center in
Poland since 2008. He has been actively involved in many
international R&D projects in the area of computer sci-
ence, HPC, and ICT, including GridLab and ComPat. He
was a research visitor at University of Queensland, Ar-
gonne National Lab, and at CCT Louisiana University. His
A research activities are focused on advanced applications,

computing simulations, scheduling and resource man-
agement in networked environments.

Oliver Perks is a Field Application Engineer at Arm,
providing application porting and optimisation support
to customers, through the use of the Arm HPC tools.
Oliver obtained his Ph.D. from Warwick University, in
profiling of HPC applications, and subsequently moved
into industry to practice performance optimisation for
large scale production workloads. Having joined Allinea,
Oliver began working on a number of H2020 projects,
including ComPat, and continues that involvement as a
representative of Arm.

Keeran Brabazon has a Ph.D. in Scientific Computa-
tion from the University of Leeds. In his current role at
Arm he specialises in the performance analysis of high-
performance computing (HPC) simulations, with a fo-
cus on the identification of specific application perfor-
mance bottlenecks through targeted sparse data collec-
tion. Keeran works in the team developing the Arm Forge
and Performance Reports HPC tools.

Vytautas Jancauskas got his Ph.D. from Vilnius Univer-
sity in 2016. The subject of the thesis was evaluating
the performance of multi-objective optimisation meth-
ods. He worked as a lecturer and assistant lecturer for
more than 3 years. Supervised undergraduate computer
networks course at the Faculty of Mathematics and Infor-
matics at Vilnius University. Vytautas contributed exten-
sively to various open-source projects, via the Google’s
Summer of Code program. He has joined the ComPat
project at LRZ in 2016.

David Coster is a senior researcher at the Max-Planck-
Institut fiir Plasmaphysik, where he leads the Edge
Physics group in the Division of Tokamak Physics, one
of the two theory divisions at IPP Garching. He was the
Project Leader for Integrated Modelling Project 3 (Core
and Edge Transport) within the EFDA ITM Task Force. As
well as being a Deputy Task Force Leader, Dr Coster was
the deputy coordinator of the seventh European Frame-
work Programme (FP7) project EUFORIA and was also
involved in the FP7 project MAPPER. His own research
has concentrated on understanding the behaviour of the
edge and scrape-off layer regions of the tokamak plasma. He is also a member of the
EUROfusion IT committee and deputy coordinator of the sub-committee developing
an approach to Open Data within EUROfusion.

Peter Coveney holds a Chair in Physical Chemistry, is
Director of the Centre for Computational Science, and
is an Honorary Professor in Computer Science at UCL.
He is also Professor Adjunct at Yale University, he is
active in a broad area of interdisciplinary theoretical re-
search including condensed matter physics and chem-
istry, materials science, life and medical sciences. He has
published over 400 scientific papers, edited 16 journal
“theme issues”, and authored three books, including two
best-selling popular science books.

Alfons Hoekstra holds a Ph.D. in Computational Science
from the University of Amsterdam and currently is a
professor in Computational Science at the University of
Amsterdam and the national research university ITMO,
St Petersburg, Russia. His research focuses on multi-
scale multi-science modelling, large-scale simulations,
and high performance computing, mainly in the biomed-
ical domain and complex systems science. He has a long-
standing expertise in Computational Biomedicine, Com-
plex Systems simulations, and high performance parallel
and distributed computing. He has published over 250
research papers. He currently leads the Computational Science Lab at the University
of Amsterdam.

	Patterns for High Performance Multiscale Computing
	Introduction
	Multiscale Computing Patterns and High Performance Multiscale Computing
	Design of Multiscale Computing Patterns Software
	Description Component
	Optimisation Component
	Resource allocation and execution component

	Applications of the Multiscale Computing Patterns software
	Extreme Scaling
	Replica Computing (Binding Affinity Calculator)

	Discussion and conclusions
	Acknowledgements
	Appendix A Supplementary data
	References

