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Abstract

Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand
RNA viruses due in part to long 59 and 39 untranslated regions (UTRs) present in the seven viral transcriptional units. To date,
specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus
(EBOV) 59-UTRs lack internal ribosomal entry site function. However, the 59-UTRs do differentially regulate cap-dependent
translation when placed upstream of a GFP reporter gene. Most dramatically, the 59-UTR derived from the viral polymerase
(L) mRNA strongly suppressed translation of GFP compared to a b-actin 59-UTR. The L 59-UTR is one of four viral genes to
possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most
dramatically in the case of the L 59-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a ‘‘weak’’ Kozak
sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2a was
phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L
translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV
was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-
defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10–100-fold lower than a wild-
type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-
infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms
by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential
therapeutic target.
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Introduction

Ebolaviruses (EBOVs) and marburgviruses (MARVs) comprise

the filoviruses, a family of enveloped, nonsegmented negative-

sense (NNS) RNA viruses [1]. These zoonotic pathogens, which

are associated with increasingly frequent outbreaks in humans,

cause lethal hemorrhagic fever and are of concern as potential

bioterrorism agents [2]. Currently, approved therapeutics to treat

these infections are not available. New treatment strategies could

be facilitated by improved insight into mechanisms regulating

filovirus replication and gene expression.

The genome of Zaire ebolavirus (EBOV), the most deadly

species of EBOV, is 18,959 nucleotides (nts) in length and contains

seven transcriptional units that direct synthesis of at least nine

distinct primary translation products: the nucleoprotein (NP),

virion protein (VP) 35, VP40, glycoprotein (GP), soluble glyco-

protein (sGP), small soluble glycoprotein (ssGP), VP30, VP24 and

the large (L) protein. L is the catalytic subunit of the polymerase

complex. Similar to other NNS RNA viruses, EBOVs encode a

multi-protein complex to carry out replication and transcription.

In the case of EBOV, viral RNA synthesis requires the viral NP,

VP35, VP30 and L proteins. Transcription of filovirus mRNAs is

presumed to occur as in other NNS viruses, where there is a

gradient of viral mRNAs with the abundance of each mRNA

transcript decreasing as the polymerase transcribes towards the 59

end of the template [3–6]. Each EBOV mRNA is presumed to be

efficiently modified with a 59-7-methylguanosine (m7G) cap and a

39 p(A) tail [6–8].

Viruses rely on the host cell for translation of their mRNAs. A

common innate antiviral mechanism is to globally inhibit protein

synthesis through the phosphorylation of the alpha subunit of the

factor eukaryotic initiation factor 2 (eIF-2a,P) (reviewed in

[9,10]). In the absence of eIF-2a,P, a complex consisting of eIF2,

GTP, and a methionine-tRNA binds to a 40S ribosomal subunit to

form the 43S preinitiation complex. The 43S subunit, in complex

with additional initiation factors, binds to a 59-m7G cap on an

PLOS Pathogens | www.plospathogens.org 1 January 2013 | Volume 9 | Issue 1 | e1003147



mRNA and scans the 59-untranslated region (UTR) downstream

to a start codon where translation initiation occurs [11]. When

virus infection induces eIF2a,P, eIF2-GTP levels decrease and

translation initiation is impaired due to decreased recruitment of

the initiator methionine tRNA [12–14]. eIF-2a,P and subsequent

inhibition of cap-dependent translation is regulated by several

kinases including PKR, a protein that is induced by type I

interferon (IFN-a/b) and activated by viral dsRNA [15,16].

Multiple RNA viruses have devised strategies to circumvent host

cell translation control. A common example would be viral 59-

UTRs that possess an internal ribosomal entry site (IRES) which

allows translation of viral RNA without a 59-m7G cap, thereby

permitting translation of proteins in a cell where cap-dependent

translation is impaired [9,10,17]. Notably, NNS RNA viruses have

not been demonstrated to encode IRESes. Furthermore, the

presence on each EBOV mRNA of a 59-(m7G) cap and a 39 p(A)

tail [6–8], suggests that they are predominately translated by a

cap-dependent mechanism. Another strategy is employed by

vesicular stomatitis virus (VSV), the prototype NNS RNA virus,

which induces preferential translation of its own mRNAs over

cellular mRNAs before eIF2a,P occurs, triggering a global

inhibition of host cell protein synthesis [18–21]. While similar to

VSV in genetic organization, filoviruses modulate cellular

translation in distinct ways. In addition to blocking IFN-a/b
production and signaling pathways in infected cells [1,22–30],

EBOV also impairs PKR activation in HEK293 cells. In contrast

to VSV, global inhibition of host protein synthesis during infection

has not been reported, although in vitro studies suggest that VP40

might downregulate host cell expression [19,31–33]. However, in

persistently infected mouse cells EBOV has been shown to induce

PKR,P and eIF2a,P, and reducing eIF2a,P in these cells

reactivated virus replication [34]. Despite these observations, the

mechanisms by which filoviruses may regulate viral mRNA

translation in the absence and presence of eIF2a,P is not

completely understood.

A characteristic of filovirus genomes is that they have long 59-

and 39-UTRs relative to other NNS viruses [3,5,35,36]. Our

studies specifically focused on the 59-UTRs of the seven EBOV

mRNAs, since 59-UTRs are critical for translation initiation. Four

of the seven mRNAs contain small alternate upstream open

reading frames (uORFs), yet their significance remains unchar-

acterized. Interestingly, uORFs are a common feature of cellular

mRNAs and modulate translation of a primary ORF (pORF) by

decreasing the number and/or efficiency of scanning ribosomes to

reinitiate at the start codon of the pORF [37–42]. Multiple factors

contribute to the frequency of translation initiation at a uAUG

versus a pAUG. These include the strength of the Kozak

consensus sequence surrounding the uAUG, where A/Gcc AUG

G is considered an optimal sequence. Furthermore, the inter-

cistronic space between the uORF and the pAUG, and the

phosphorylation status of eIF-2a [38,39,43–45] determine wheth-

er translation occurs at a uAUG or pAUG. In the absence of eIF-

2a,P, cap-dependent translation is efficient allowing for higher

rates of ribosome initiation at the uORF [11]. During conditions

of enhanced eIF2a,P, translation initiation is impaired causing a

ribosome to scan past the uAUG and initiate at the pAUG.

Consequently, under conditions of cell stress, eIF2a,P promotes

translation initiation at the pORF of select mRNAs possessing

uORFs (e.g. ATF4, CHOP, GCN2 mRNAs) [12,43,46,47].

In this study, we characterized how the EBOV 59-UTRs modulate

translation. Mutating any of the four uAUGs present in the EBOV

genome enhances translation at the corresponding pORF. The most

dramatic effect was with the L gene where the L uAUG can potently

suppress pORF translation; however, in response to eIF2a,P, the L

uAUG maintains L translation. Modulating viral polymerase levels is

biologically significant since ablating the L uORF in a recombinant

EBOV reduces viral titers 10–100-fold in cell culture, severely impairs

viral RNA synthesis, and functions to maintain virus titers in cells

treated with stress inducing agents. These data suggest that a uORF

in the EBOV L mRNA regulates polymerase expression in response

to the status of the cellular innate immune response and is required

for optimal virus replication.

Results

Ebola virus 59-UTRs do not exhibit IRES activity
To our knowledge, there is no NNS RNA virus with demon-

strated IRES activity. However, EBOV 59-UTRs are long,

compared to those of most other NNS RNA viruses, ranging

between 80–460 nucleotides, and are predicted to possess secondary

structures [5] (and Figure S1). Therefore, we tested if any of the

EBOV 59-UTRs are able to promote cap-independent, internal

translation initiation. We designed a bicistronic reporter in the

mammalian expression plasmid pCAGGS where the firefly

luciferase ORF is followed by a multiple cloning site (MCS) and

then by Renilla luciferase (Figure 1A). Each of the EBOV 59-UTRs

and the EMCV IRES were placed within the MCS, and these

constructs were transfected into 293T cells. Eighteen hours post

transfection, cells were harvested and subjected to a dual luciferase

reporter assay. The EMCV IRES was able to drive cap-

independent Renilla luciferase expression. However, none of the

EBOV 59-UTRs allowed detectable internal translation initiation as

indicated by the Renilla luciferase reporter (Figure 1B). Furthermore,

a NP 59-UTR-GFP reporter mRNA lacking a m7G cap reduced

GFP levels by over 90% as compared to a capped version of the

same mRNA (data not shown). These data indicate that the EBOV

59-UTRs do not function as IRESes and suggest that in infected cells

they are translated by a cap-dependent mechanism, consistent with

the capped-nature of EBOV mRNAs [6–8].

Author Summary

Filoviruses (Ebola and Marburg viruses) are emerging
zoonotic pathogens that cause lethal hemorrhagic fever in
humans and have the potential to be employed as
bioterrorism agents. Currently, approved therapeutics to
treat filovirus infections are not available and new
treatment strategies could be facilitated by improved
mechanistic insight into the virus replication cycle.
Compared to other related viruses, filovirus messenger
RNAs have unusually long 59 untranslated regions (UTRs)
with undefined functions. In the Zaire ebolavirus (EBOV)
genome, four of its seven messenger RNAs have 59-UTRs
with a small upstream open reading frame (uORF). We
found that a uORF present in the EBOV polymerase (L) 59-
UTR suppresses L protein production and established a
reporter assay to demonstrate that this uORF maintains L
translation following the induction of an innate immune
response; a phenomenon observed with several uORF-
containing cellular messenger RNAs. The presence of the
uORF is important for optimal virus replication, because a
mutant virus lacking the upstream reading frame repli-
cates less efficiently than a wildtype virus, an attenuation
which is more pronounced following the induction of
cellular stress. These studies define a novel mechanism by
which filovirus upstream open reading frames modulate
virus protein translation in the face of an innate immune
response and highlight their importance in filovirus
replication.

Ebola Virus 59-UTRs Modulate Replication
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EBOV 59-UTRs modulate translation of a downstream GFP
reporter

To test the role of EBOV 59-UTRs in the context of cap-

dependent translation, we transfected equal amounts of in vitro

transcribed mRNAs in which individual EBOV 59-UTRs were

placed upstream of the GFP ORF (Figure 2A). GFP was used to

quantify the effects of each 59-UTR on translation, because it was

previously described to be a sensitive reporter with a large

dynamic range suitable for translation assays [48]. As a control, we

also transfected an mRNA construct with a b-actin 59-UTR

upstream of GFP (Figure 2A). The in vitro transcribed mRNAs

were quantified by qRT-PCR. Equivalent copy numbers of each

mRNA were transfected into 293T cells. At 2.5 hours post

transfection, cells were harvested and the mean fluorescence

intensity (M.F.I.) of the GFP positive population was quantified by

flow cytometry and normalized to the M.F.I. of the b-actin 59-

UTR control (Figure 2B). Figure 2B summarize these data which

are graphed from left to right according to the order of the genes

as they appear in the viral genome. The NP, VP35, VP40 and

VP30 59-UTRs resulted in GFP expression comparable to the b-

actin 59-UTR construct. The GP and VP24 59-UTRs modestly,

but reproducibly, enhanced GFP expression relative to the b-actin

control. qRT-PCR of RNA isolated from the transfected 293T

cells in Figure 2C demonstrated comparable levels of GFP mRNA

in each group at the time of the analysis, suggesting that any

differences in GFP expression are due to differences in translation.

We also transfected primary human monocyte-derived dendritic

cells (DCs), because DCs are important targets of EBOV infection

in vivo [49] and analyzed GFP expression. In DCs, the GFP

expression profile was similar to that observed in 293T cells

(Figure 2D). In contrast to the other EBOV 59-UTRs, the L 59-

UTR dramatically suppressed GFP expression in both 293T cells

and DCs compared to the b -actin 59-UTR (Figure 2B and D, the

L bars are highlighted in gray). Representative histograms of flow

cytometry data in each cell line are depicted in Figure 2E and 2F,

displaying the effect of the L 59-UTR mediated suppression of

GFP compared to the b-actin control 59-UTR.

uAUGs present in the 59-UTRs of the VP35, VP30, VP24
and L mRNA modulate translation initiation at the pAUG

One feature of the 80 nt long L 59-UTR that may influence

translation of the pORF is the presence of an uAUG and a

corresponding uORF that overlaps the pORF (Figure 2A).

However, the L 59-UTR is only one of four EBOV 59-UTRs

that possess uAUGs and uORFs. The VP35, VP30 and VP24 59-

UTRs also have small uORFs upstream of the pORF. Unlike L,

these do not overlap the pORF (Figure 2A). In order to

characterize the functional significance of these uAUGs, we

replaced the uAUG codons present in the VP35, VP30, VP24, and

L 59-UTRs with UUG in the context of the GFP reporter

(Figure 3A). RNA transfections were performed the same way as in

Figure 2. Flow cytometry demonstrated that each uAUG

suppresses GFP signals, since their ablation enhanced GFP

expression in 293T cells (Figure 3B). Quantitative RT-PCR

analysis of RNA isolated from the transfected 293T cells

demonstrated comparable levels of GFP mRNA in each group

at the time of the analysis (Figure 3C). We also performed the

same experiment in DCs, which produced a GFP expression

profile similar to that obtained in 293T cells (Figure 3D). In both

293T cells and DCs, ablation of the L 59-UTR uAUG resulted in a

6.32 and 5.59 fold increase, respectively, in GFP signal relative to

its corresponding 59-UTR possessing a uAUG (Figure 3B and D,

bars representing the L 59-UTR data are highlighted in gray). By

comparison, deleting the uAUG in the VP35, VP30, and VP24 59-

UTRs increased GFP expression between 1.75 and 3.20 fold in

both 293T and DCs (Figure 3B and D). Representative histograms

from 293T cells and DCs of the L 59-UTR-GFP reporter with and

without the uAUG are shown in Figure 3E and 3F. These data

demonstrate that each of the uAUGs present in EBOV 59-UTRs

suppresses translation of the pORF, though the VP30 uAUG has

the least dramatic effect on reporter expression. Because the

uAUG of the L 59-UTR had the most dramatic effect on pORF

(GFP) translation, we chose to further characterize the L 59-UTR.

The L 59-UTR uAUG suppresses translation of an L
protein-encoding mRNA

In order to examine the impact of the L 59-UTR in a more

natural context, the L 59-UTR was placed, with or without the

uAUG, upstream of sequence corresponding to the first 505 amino

acids (a.a.) of L followed by a C-terminal FLAG-tag (Figure 4A).

This truncated version of L was used as a model transcript because

of the length of the L mRNA (6783 nt long, encoding a protein of

2212 a.a.). Each construct was cloned into an expression plasmid,

and equivalent amounts of each plasmid were transfected into

293T cells. Consistent with the GFP reporter data, ablation of the

uAUG in the L 59-UTR substantially enhanced the signal of the L

ORF by western blot (Figure 4B). This effect was much more

dramatic when L was co-transfected with the polymerase co-factor

VP35 and was specific for VP35 since co-transfection with a

plasmid expressing GFP did not enhance L expression (compare

lanes 1 and 2 with 3 and 4). The enhancing effect of VP35 may

Figure 1. The 5’ UTRs of EBOV do not function as internal
ribosome entry sites. A. Diagram of the bicistronic reporter
constructs used. FF Luc, firefly luciferase; Ren Luc, Renilla luciferase;
MCS, multiple cloning site; EMCV IRES, encephalomyocarditis virus
internal ribosome entry site; EBOV UTR, EBOV-derived 5’-untranslated
region B. Normalized data from transfected 293T cells indicating the
ratio of Renilla luciferase to firefly luciferase for each bicistronic reporter
construct. Each bar is the mean of three samples. Data is representative
of three independent experiments.
doi:10.1371/journal.ppat.1003147.g001

Ebola Virus 59-UTRs Modulate Replication
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Figure 2. A screen of EBOV 5’ UTRs demonstrates that the polymerase (L) 5’-UTR suppresses GFP expression. A. Diagram of the in vitro
generated mRNAs used to assess the impact of 59-UTRs on translation efficiency. EBOV 59-UTRs or the b-actin control 59-UTR were placed upstream of
a GFP reporter ORF. Distances in nucleotides from the pAUG are indicated at the top. uAUGs are indicated by (S) and stop codons for uORFs are
indicated by (X). Within the UTRs, black boxes indicate uORFs out of frame with GFP, while white boxes indicate uORFs in frame with GFP. The lengths
(in nucleotides, including stop codons) of the uORFs are indicated. For the L uORF, the black box represents the L uORF sequence, while the gray box
depicts the remainder of the overlapping uORF that consists of GFP-derived sequences. The UTRs are listed according to their order in the EBOV
genome. B. Mean GFP fluorescence intensity (M.F.I.) of 293T cells transfected with equal copies (determined by real time PCR) of in vitro transcribed
mRNAs encoding GFP corresponding to those diagramed in A. At 2.5 hours post transfection, cells were harvested and analyzed by flow cytometry
for GFP expression. The bars are presented according to the order of genes in the EBOV genome, and data highlighting the L 59-UTR is indicated by a
gray bar. Data are the mean of triplicate samples. C. A real time PCR measurement of GFP mRNA levels present in the transfected cells described in B
was determined for each sample. Each sample was normalized to 18s rRNA. D. The same mRNAs transfected in B were transfected into primary
human dendritic cells (DC). Data are the values from single transfections. E and F. Selected GFP expression data from the experiments described in
2B and D, but depicted in histogram format. 293T cells and dendritic cells were mock transfected (dashed line), or transfected with GFP downstream
of either the b-actin (dotted line) or L 59-UTR (solid line), indicating the L 59-UTR suppresses GFP expression. The data are representative of three
independent experiments.
doi:10.1371/journal.ppat.1003147.g002

Ebola Virus 59-UTRs Modulate Replication
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Figure 3. EBOV uAUGs attenuate translation at primary open reading frames (pORFs). A. Diagram depicting the location of each mutated
uAUG codon (to UUG) in the indicated EBOV 59-UTRs. B. Equal copies of mRNA (determined by real time PCR) encoding GFP downstream of
individual 59-UTRs described in 3A were transfected into 293T cells. At 2.5 hours post transfection, cells were harvested and analyzed by flow
cytometry. The fold difference in GFP mean fluorescence intensity (M.F.I.) between the paired samples (with and without the uAUG) is indicated. Each
bar represents the mean of triplicate samples. Data for the L 59-UTR are represented with gray bars. C. A real time PCR measurement of GFP mRNA
levels present in the transfected cells described in B was determined for each sample. Each sample was normalized to 18s rRNA. D. The same
experiment was performed in parallel as in B, but in primary human dendritic cells. Data are values of single transfections. E and F. Select,
representative flow cytometry data from experiments 2B and D; depicted in histogram format showing GFP fluorescence of 293T and dendritic cells

Ebola Virus 59-UTRs Modulate Replication
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reflect the ability of VP35 to promote L protein stability, as the

functional equivalent of VP35 in other NNS viruses stabilizes L

proteins [50–54], or it could reflect the ability of VP35 to stimulate

translation through inhibition of PKR [32] (Figure 4B). These data

confirm that the uAUG in the L 59-UTR suppresses L expression

in the context of its natural sequence.

Efficiency of translation initiation at the L uAUG is
determined by its sequence context

We sought to determine if the uAUG in the L 59-UTR was

accessible for translation initiation by using our mRNA reporter

assay. Therefore, we placed GFP downstream of the entire L

uORF sequence (Figure 5A). GFP was clearly detectable in cells

transfected with the uORF-GFP reporter construct (compare the

signal of mock transfected cells with cells transfected with the

uORF-GFP construct in Figure 5B). The amount of GFP signal

was less than that of the b-actin 59-UTR GFP control (Figure 5B),

a decrease in intensity that may be due to redistributed GFP into

punctate cytoplasmic foci, as a result of the uORF-GFP fusion

(data not shown). Furthermore, adding a ‘‘strong’’ Kozak sequence

around the uAUG (A at the 23 position and a G at the +4

position, where the A of the AUG is designated as +1) increased

GFP signal (Figure 5B). Finally, a construct with only the first six

nucleotides of the uORF fused in frame with GFP translated GFP

to the same level as the B-actin GFP control. These data indicate

that the L uAUG does initiate translation.

A strong but not a weak uAUG Kozak sequence in the L
59-UTR modulates pORF translation

We further examined, in the context of the full length L 59-

UTR, the effect of altering the Kozak sequence surrounding the

uAUG (constructs outlined in Figure 6A). Intorducing a strong

Kozak sequence surrounding the uAUG suppressed GFP trans-

lation (compare GFP levels between the wildtype L 59-UTR

reporter and the uAUG SK construct in Figure 6B and RNA

levels in 6C). This is consistent with data in 5B, since an increase in

translation initiation at the uAUG would be expected to suppress

pAUG translation and therefore decrease GFP expression

(Figure 6B). In contrast, ‘‘weak’’ uAUG Kozak sequences did

not enhance GFP signal (compare uAUG WK1 and WK2 to the

wildtype L 59-UTR), suggesting that the parental uAUG is in a

weak translation initiation context. Introducing a stop codon

directly after the uAUG did enhance GFP (construct labeled

uAUG STOP); this likely reflects cap-dependent scanning and

reinitiation after the stop codon. Finally, ablating the uAUG

codon to UUG or UCG, changes expected to leave the L 59-UTR

predicted secondary structure intact (Figure S1 and Table S1),

enhanced GFP expression 6–7 fold, providing further evidence

that translation initiation at the uAUG regulates expression of the

pORF (Figure 6B).

Position-dependent suppression of pORF translation by
the L uAUG

To determine how the location of the L uAUG might affect

pORF (GFP) translation, the position of the uAUG was moved

from its original location (Figure 7A). Strikingly, relocating the

uAUG (while preserving the Kozak consensus sequence at the 23

and +4 positions) only selectively repressed GFP expression, since

only one of the four reintroduced uAUGs suppressed translation

(Figures 7B and C). This indicates that the position of the L uAUG

is important for its ability to regulate L translation.

Levels of L modulate EBOV RNA synthesis activity
The L protein is the catalytic subunit of the EBOV RNA-

dependent RNA polymerase complex that carries out viral

transcription and replication [55]. To address the functional

significance of modulating L protein expression, a transfection-

based viral polymerase assay was used. The components of the

viral polymerase complex, i.e. EBOV proteins NP, VP35, VP30

and L, were co-expressed with a minigenome consisting of a

reporter gene flanked by the cis-acting sequences required for viral

transcription and replication. Previous studies demonstrated that

the magnitude of the reporter signal fluctuates depending on the

amount of each viral co-factor titrated into this system [35,56–58].

To expand on these studies, we titrated the L expression plasmid

(which lacks the native 59-UTR of L). In the absence of L plasmid

there was no measurable reporter activity (Figure 8A). Small

amounts of L plasmid resulted in a rapid increase in activity, but a

two-fold increase in L plasmid from 400 to 800 ng dramatically

reduced polymerase activity (Figure 8A). This suggests there is an

optimal amount of L required for polymerase activity and that

excess L can be detrimental to viral RNA synthesis.

which were mock transfected (dashed line), transfected with GFP downstream of the WT L 59-UTR (solid line) or the mutated L 59-UTR (dotted line).
The data are representative of three independent experiments.
doi:10.1371/journal.ppat.1003147.g003

Figure 4. The L 59-UTR uAUG suppresses the translation of the
first 505 amino acids of L. A. Schematic of the expression constructs
used, where the L 59-UTR is in its natural context, upstream of
sequences encoding the first 505 amino acids of L and is FLAG-tagged
at its C-terminus. The length of the 59-UTR, the L uORF and the L pORF
in nucleotides is indicated. B. Western blot analysis indicating that
ablating the uAUG in the 59-UTR of L enhances L (amino acids 1–505)
protein expression. Left. Each L construct was coexpressed with GFP-
FLAG. Right. Each L construct was coexpressed with VP35-FLAG, which
enhances L expression.
doi:10.1371/journal.ppat.1003147.g004
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A recombinant EBOV lacking the L uAUG is attenuated in
cell culture

To determine the impact of the L uAUG on EBOV replication, a

recombinant EBOV was generated in which the uAUG was

mutated to UCG. We confirmed that the AUGRUCG mutation in

the L 59-UTR enhances translation at the pORF in our established,

293T cell-based GFP reporter assay without altering predicted

RNA secondary structures (see Figure 6, Figure S1, and Table S1).

The genomes of both the recombinant wildtype and mutant EBOVs

were sequenced and confirmed to possess no additional mutations.

Figure 8B outlines the predicted EBOV L mRNA for the wildtype

and the L 59-UTR mutant virus, while Figure 8C displays the tissue

culture infectious dose 50 (TCID50), the relative copy number of

vRNA, and the vRNA copy number to TCID50 ratio of both the

mutant and wildtype EBOVs. Figures 8D and 8E display the growth

kinetics of each virus in both Vero and A549 cells after infection at a

multiplicity of 0.005. The EBOV L 59-UTR mutant displayed

slowed growth kinetics compared to the wildtype virus in both Vero

and A549 cells. This effect was more prominent in A549 cells where

the mutant virus grew to approximately a 100-fold lower titer by day

7 post infection (Figure 8E). We further confirmed the growth defect

of the L 59-UTR mutant virus by infecting both Vero and A549 cells

at a higher MOI of 0.1 (Figure S2). In both cell lines there were

decreased mutant virus titers over the first 4 days in culture, but the

mutant virus did eventually reach equivalent titers in both cell lines

(Figure S2). The AUGRUCG codon mutation was stable as a 700

nucleotide region surrounding the L uAUG did not accumulate

additional changes following nine passages in A549 cells (data not

shown). That second site repressor mutations did not arise is in line

with the in vitro data indicating uAUG function is position

dependent (Figure 7). Therefore, sites where single nucleotide

changes could introduce new uAUGs might not create effective

regulators of L translation. These data demonstrate that the

mutation of these two nucleotides, which lie outside of any

previously described regulatory or coding sequence, significantly

attenuates EBOV replication.

The EBOV L-59UTR uAUG mutant virus is impaired for
RNA synthesis at early time points post infection

We have not been able to generate antisera that detects the

native L protein (data not shown and [59]). Therefore, it has not

been possible to directly assess the impact of the uAUG mutation

on L protein levels. To determine how mutation of the L uAUG

affects virus replication, RNA was isolated from A549 cells

infected with wildtype and mutant virus at a multiplicity of 1 at 6,

Figure 5. Efficiency of translation initiation at L uAUG is
determined by its sequence context. A. L 59-UTR GFP mRNA
reporter constructs were generated such that the uORF is fused in
frame to GFP. The nucleotide sequence immediately surrounding the

uAUG of each construct is displayed. The first construct (uORF-GFP)
includes the first 46 nucleotides of the L 59-UTR up to the uAUG
followed by the entire L uORF sequence placed in frame with the GFP
ORF (labeled uORF-GFP). The middle construct (uORF-GFP SK) is
identical to the first, but the uAUG is surrounded by a strong Kozak
sequence (A at the 23 position and a G at the +4 position, where the A
of the AUG is designated as +1). The bottom construct includes the L 59-
UTR, through the uAUG and the second codon of the uORF which was
placed in frame with the GFP ORF, but lacks the rest of the uORF. In
each case, the start codon for GFP was removed. The number of
nucleotides in each construct is indicated and the features of each
construct are summarized in the box above the diagram. B. Equal
amounts of each in vitro transcribed mRNA were transfected into 293T
cells. At 2.5 hours post transfection, cells were harvested and analyzed
by flow cytometry. The experiment was performed in triplicate, and a
representative sample is displayed for each group. C. GFP mRNA levels,
as determined by real time PCR, present in the transfected cells
described in B were determined for each sample.
doi:10.1371/journal.ppat.1003147.g005
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12, and 24 hours post-infection and negative sense genomic RNA

(vRNA) and mRNA levels were assessed by quantitative RT-PCR

(Figure 9A). The primer pairs in this study (Table S2) were

validated with linearized plasmids encoding each of the seven

EBOV genes (Figure S3). As early as six hours post infection and

at each additional time point, the vRNA levels of the EBOV

mutant virus were reduced compared to wildtype EBOV

(Figure 9B). This difference in RNA synthesis between the

wildtype and mutant virus was also apparent for each of the

seven viral mRNAs (Figures 9C–E). Furthermore, differences in

mRNA levels between the wildtype and mutant virus were similar

for each of the seven transcriptional units at all times post infection

and their abundance indicated the presence of a transcriptional

gradient, with NP mRNA being the most abundant and L mRNA

being the least abundant (Figure 9C–E). These data are consistent

with the data obtained with the minigenome assay (Figure 8A), in

which excess L levels result in decreased viral RNA synthesis.

The L uORF enhances L expression under conditions of
cell stress

Multiple stimuli including viral infection, UV irradiation, and

treatment with chemicals, such as thapsigargin (TG) can trigger

cell responses that induce eIF2a,P and a general inhibition of

host cell protein synthesis [12–14]. For a number of cellular

transcripts possessing uORFs (e.g. CHOP, ATF4), such stress

conditions cause scanning ribosomes to bypass uAUGs, resulting

in enhanced translation at the pORF [43,47]. To test if the L

uORF might serve to maintain cap-dependent translation

initiation at the pAUG under circumstances where eIF2a,P

levels are enhanced, we designed reporter constructs modeled after

ones from previous studies [43,47]. An expression plasmid was

generated with the L 59-UTR followed by the first 13 a.a. of L in

frame with firefly luciferase (denoted L-FF, Figure 10A). We also

generated an identical construct without the uAUG (Lns-FF). To

test these reporter constructs in the absence or presence of cell stress,

we first determined that TG treatment did induce eIF2a,P

(Figure 10B). Next, 293T cells were transfected with a control Renilla

luciferase plasmid and either the L-FF or Lns-FF constructs.

Twenty-four hours post-transfection, 293T cells were treated with

DMSO (labeled D) or with four concentrations TG to induce

eIF2a,P, which was measured at 6 hours post treatment by

western blot (shown in Figure 10C). In the same experiment, cells

were harvested at 10 hours post treatment, and the firefly/Renilla

luciferase ratio for each group was calculated. Consistent with the

GFP and western blot assays, the wildtype L 59-UTR suppressed

luciferase signal relative to the L 59-UTR without a uAUG

(Figure 10D). Furthermore, cells transfected with L-FF and treated

with TG exhibited a 2-fold increase in the firefly/Renilla ratio over a

Figure 6. pORF translation is suppressed by a strong uAUG
Kozak sequence in the L 59-UTR, but is not affected by a weak
uAUG Kozak sequence. A. Diagram depicting the in vitro generated
L 59-UTR GFP mRNA reporter constructs with permutations surrounding
the L uAUG. For the L uORF, the black box represents the L uORF
sequence, while the gray box depicts the remainder of the overlapping
uORF that consists of GFP-derived sequences. Each sequence surround-
ing the uAUG above the diagram represents a reporter construct. The
top is the wildtype nucleotide sequence surrounding the L uAUG (WT L

59-UTR). The next construct has a strong Kozak sequence (A at the 23
position and a G at the +4 position, where the A of the AUG is
designated as +1). Two constructs predicted to have a weak Kozak
sequence (uAUG WK1 and WK2) have mutations at the +4 and +4/+5
positions, respectively. The construct labeled ‘‘uAUG STOP’’ has a point
mutation that incorporates a stop codon directly after the uAUG start
codon. Finally, uUUG and uUCG both ablate the uAUG start codon. Each
construct is analyzed in panel B. B. Equal amounts of each in vitro
transcribed mRNA were transfected into 293T cells. At 2.5 hours post
transfection, cells were harvested and analyzed by flow cytometry. Each
bar represents the mean and standard deviation of triplicate samples,
and all values were calculated relative to the B-actin 59-UTR GFP control
mRNA, which was set to 100%. C. A real time PCR measurement of GFP
mRNA levels present in the transfected cells described in B was
determined for each sample.
doi:10.1371/journal.ppat.1003147.g006
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DMSO control (Figure 10D). The TG-mediated maintenance of L

translation was dependent on the L uAUG, since the firefly/Renilla

ratio of the Lns-FF construct, which lacks the uAUG, did not have

the same effect under identical treatment conditions (Figure 10D).

The L uAUG modulates L translation and maintains EBOV
replication following thapsigargin treatment in A549
cells

To confirm the 293T cell results, an additional stress assay was

performed in A549 cells (Figure 11). This assay included the ATF4

59-UTR upstream of firefly luciferase as a positive control to

measure the stress response (Figure 11B and [43]). TG treatment

specifically enhanced the Firefly/Renilla ratio 2–3 fold in the L-FF

group compared to untreated cells (labeled U) or DMSO treated

cells (labeled D, Figure 11B). This effect was dependent on the

uAUG, since the Firefly/Renilla ratio in the Lns-FF transfected

samples did not exhibit the same trend. We also tested a construct

where the uAUG was surrounded by the ‘‘strong’’ Kozak

sequence, demonstrated in Figures 5 and 6 to enhance translation

at the uAUG (Lsk-FF, Figure 11A). We predicted that a strong

Kozak sequence would increase translation initiation at the

uAUG, decrease ribosome bypass, and suppress translation at

the pAUG. This sequence might also impair translational

modulation at the pAUG in response to cell stress, consistent

with studies examining the CHOP 59-UTR [47]. Reporter gene

expression from this Lsk-FF construct responded to TG treatment

Figure 7. Suppression of pORF translation by the uAUG in the L 59-UTR is position dependent. A. Diagram depicting wild-type and
mutated L 59-UTR-GFP reporter constructs in which the location of the uAUG was altered. For the L uORF, the black box represents the L uORF
sequence, while the gray box depicts the remainder of the overlapping uORF that consists of GFP-derived sequences. Nucleotide changes that differ
from the wildtype L 59-UTR sequence are indicated in bold and the underlined sequences highlight the uORFs. Additional mutations were introduced
to preserve the Kozak sequence at the 23 and +4 position such that they match that present in the wildtype L 59-UTR. The reading frame of the uORF
for each construct is indicated on the right. B. Equal amounts of in vitro transcribed mRNAs corresponding to the constructs depicted in panel A were
transfected into 293T cells. At 2.5 hours post transfection, cells were harvested and analyzed by flow cytometry for GFP fluorescence. Each bar
represents the mean of triplicate samples, and all values were calculated relative to the B-actin 59-UTR GFP control mRNA which was set to 100%. C. A
real time PCR measurement of GFP mRNA levels present in the transfected cells described in B was determined for each sample.
doi:10.1371/journal.ppat.1003147.g007
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Figure 8. A two nucleotide mutation ablating the uAUG in the EBOV L 59-UTR attenuates virus replication. A. Modulating levels of L
impacts EBOV minigenome activity. A plasmid expressing T7 RNA polymerase was cotransfected with plasmids that produce the EBOV minigenome
RNA and the viral proteins L, VP30, VP35, and NP. As indicated, increasing amounts of L plasmid were transfected with constant amounts of each of
the plasmids encoding the other viral proteins. Each bar represents the mean of triplicate samples and is representative of three independent
experiments. B. Diagram of predicted transcripts of the L mRNA for a rescued wildtype EBOV and an L uAUG mutant EBOV. The black box denotes the
uORF, while the white boxes indicate the EBOV L ORF. C. A comparison of the tissue culture infectious dose 50 (TCID50) and genomic viral RNA
(vRNA) present in both the wildtype and the L 59-UTR mutant virus stocks. For each virus stock, the TCID50 was determined on Vero cells. In parallel,
vRNA was harvested from equal volumes of each virus stock. The vRNA was reverse transcribed with a vRNA specific primer, and the relative vRNA
copy number was calculated by quantitative PCR. This assay used primers specific for a region of the EBOV genome corresponding to the NP gene
(see Figure S3). The ratio of vRNA to infectious virus was calculated for each sample. D and E. Replication kinetics of the wildtype EBOV and mutant
EBOV lacking the uAUG (AUGRUCG) in its L 59-UTR. Virus growth was compared in Vero cells (D) or A549 cells (E) following infection at a MOI of
0.005. Virus growth was measured by TCID50. Each point represents the mean and standard deviation of three independent experiments.
doi:10.1371/journal.ppat.1003147.g008
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similarly to L-FF, suggesting that this particular Kozak sequence

does not ablate the stress-responsive nature of the uAUG.

Finally, we sought to address the impact of the L uAUG on

EBOV replication under stress conditions. A549 cells were

infected with either the wildtype or 59-UTR uAUG mutant

EBOV and then treated with DMSO or with TG to induce cell

stress (illustrated in Figure 11C). TG treatment decreased titers of

both viruses compared to a DMSO control. However, the

wildtype EBOV titer was suppressed to a lesser degree than was

the mutant virus titer (labeled L 59-UTR Mut, Figure 11D),

suggesting the uAUG functions to maintain virus replication in the

presence of a stress response. Taken together, both the reporter

and virus infection data indicate that the L uORF suppresses

translation initiation at the L pORF, but the uORF also allows

levels of L translation to be maintained when eIF2a,P increases,

as might occur due to ER stress or activation of PKR during virus

infection. This would allow virus replication to be maintained in

the presence of a host cell innate immune response. A proposed

model is illustrated in Figure 11E.

Discussion

EBOV 59-UTR sequences are quite long relative to other NNS

RNA viruses. The average length of a EBOV 59 UTR is 214 nt,

compared to rabies virus (RV), Newcastle disease virus (NDV) and

VSV which are 23, 59 and 21 nt respectively (Genbank:

EF206716.1 and EF206716.1, and NC_001560.1). Moreover,

filovirus mRNAs are strikingly similar to eukaryotic mRNAs. The

average length of a eukaryotic mRNA 59-UTR ranges from 90 to

210 nt depending on the study [60–62]. Furthermore, while 30–

40% of the eukaryotic transcriptome contains uORFs [63,64],

none are present in VSV, RV or NDV. In contrast, four out of the

seven (57%) EBOV 59-UTRs contain a uAUG/uORF. Our study

provides evidence that the 59-UTRs of EBOV transcripts

modulate translation and is consistent with a scanning model of

translation initiation [65]. The presence of uORFs within these 59-

UTRs suppresses translation of pORFs, and most dramatically the

translation of L. Furthermore, the L uAUG enhances L translation

in response to eIF2a,P. NNS viruses regulate their gene

expression via a transcriptional gradient, where genes at the 39

end of the negative-sense genome are transcribed more abun-

dantly than those at the 59 end ([3,6] and illustrated in Figure 9).

This study provides evidence for an additional mechanism by

which EBOVs may regulate viral protein levels, demonstrates that

an intact L uORF is critical for optimal virus replication, and

suggests that the L uORF functions to maintain EBOV replication

in the face of a cell stress response.

There are several studies that implicate uORFs in regulating

gene expression of both DNA and positive sense RNA viruses (e.g.

[66–69]). More recently uORFs were shown to regulate cellular

protein translation in response to cell stress [12,43,46,47]. While

there are other examples of NNS RNA viruses that encode a

uORF [70,71], to our knowledge, our data provide the first

description of a NNS RNA virus that employs a uORF to regulate

Figure 9. The EBOV L 59-UTR uAUG mutant virus is impaired for RNA synthesis at early times post infection. A. Both wildtype EBOV and
an L uAUG mutant EBOV were used to infect A549 cells (MOI = 1), and RNA was harvested at 6, 12, and 24 hpi. Strand specific PCR was performed to
measure the levels of viral mRNA or genomic RNA (vRNA). Levels of individual viral mRNAs were determined from purified polyadenylated RNA by
quantitative real-time RT-PCR with seven primers, each specific to a different viral gene (NP, VP35, VP40, GP, VP30, VP24 or L, as indicated). To
measure vRNA levels, six of the seven primers complementary to the negative sense vRNA were individually used for cDNA synthesis reactions.
Quantitative PCR was performed on these cDNA preparations to quantify the relative amounts of vRNA in each sample. B. Representative data
depicting genomic RNA levels. Each data point represents the average of values from the six individual regions on the vRNA to ensure an accurate
measurement. C–E. Representative mRNA levels for each EBOV mRNA for both the wildtype and mutant virus at 6, 12, and 24 hpi. Each bar
corresponds to a different EBOV mRNA.
doi:10.1371/journal.ppat.1003147.g009
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viral polymerase levels and to regulate protein expression when

eIF2a is phosphorylated. The data also demonstrate that a uORF

exerts a positive effect on filovirus replication.

A previous study has characterized regulatory regions of the

EBOV genome by inserting these into a minigenome reporter

assay (each insertion included the 39-UTR of the upstream gene,

the transcription stop and start signals, and the 59-UTR of the

downstream gene) [72]. Results from these experiments deter-

mined that regulatory regions encompassing both the VP30 and L

59-UTRs modestly suppress reporter activity. In these assays,

reporter activity was dependent upon virus transcription, replica-

tion and translation of a reporter gene, in contrast to our

experiments which allow for the direct assessment of each EBOV

59-UTR on translation. Regardless of these differences, the data

using the regulatory region containing the L 59-UTR is consistent

with our assays directly examining the effect of the L 59-UTR on

translation.

Functionally, the EBOV UTRs can be divided into three classes.

First are 59-UTRs lacking uORFs which translated reporter

mRNAs to levels comparable to the b-actin 59-UTR-GFP mRNA

(NP, GP, VP40, Figure 2). Second are those, other than L, that

possess uORFs. These also translated reporter mRNAs to levels

comparable to the b-actin control (VP35, VP30, and VP24).

Ablating each of these uAUGs also enhanced GFP expression to

levels above the b -actin 59-UTR control mRNA (Figure 2 and 3).

Why we observe an enhancement in reporter signal after mutating

each uAUG will be a focus of future studies. The third group

includes only the L 59-UTR, which strongly suppresses translation

of the pORF, a suppression mediated by the L uAUG (Figures 2–7).

Interestingly, the first four nucleotides of the transcriptional start

sequences are GAUG for each EBOV 59 UTR (with the exception

of NP and L). We did not test the function of these uAUGs since

prior work demonstrates that an AUG this close to the 59 end of an

mRNA does not efficiently initiate translation [73].

Our reporter assays indicate that the L uAUG initiates

translation as indicated by expression of constructs where the

uORF was fused in frame with GFP and is further supported by

the observation that expression of such constructs is enhanced by

increasing the ‘‘strength’’ of the Kozak sequence surrounding the

uAUG (Figure 5). That the uAUG plays a critical role in

Figure 10. The L uAUG modulates translation of the L pORF in response to eIF2a phosphorylation in 293T cells. A. Diagram of the
pCAGGS EBOV L 59-UTR firefly luciferase fusion reporter construct with the EBOV L 59-UTR upstream of L (amino acids 1–13) in frame with firefly
luciferase (L-FF) and an identical construct, lacking the uAUG codon (Lns-FF). B. Thapsigargin (TG) treatment induces eIF2a,P. Cells were treated with
either DMSO or with increasing doses of TG and lysed in NP-40 lysis buffer with protease inhibitors. eIF2a,P levels were measured by western blot. C.
Western blot of total eIF2a and eIF2a,P levels, from untreated and TG-treated cells which were lysed in passive lysis buffer that was used for the
luciferase analysis in panel D. D. The L uAUG functions to maintain L translation following TG treatment. 293T cells were transfected with pRLTK and
the L-FF or the Lns-FF reporter constructs. At 24 hpt, cells were treated with four doses of TG and harvested at 10 hours post treatment. Dual
luciferase assays were performed to determine the firefly to Renilla luciferase ratio in the presence or absence of TG treatment and the FF to Renilla
ratio of the DMSO treated cells transfected with L-FF was set to 1. Each data point represents the mean and standard deviation of four replicates.
doi:10.1371/journal.ppat.1003147.g010
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Figure 11. The L uAUG modulates L translation and maintains EBOV replication in response to eIF2a phosphorylation in A549 cells.
A. Diagram of the EBOV L 59-UTR firefly luciferase fusion reporter construct with the EBOV L 59-UTR upstream of L (amino acids 1–13) in frame with
firefly luciferase (L-FF), a construct with a strong Kozak sequence (A at the 23 position and G at the +4) surrounding the uAUG (Lsk-FF) and a
construct lacking the uAUG codon (Lns-FF). B. A549 cells were transfected with pRLTK and either L-FF, Lns-FF or Lsk-FF. An established stress reporter,
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regulating L pORF translation is supported by our studies

demonstrating that altering the L uAUG from a weak Kozak

sequence to a strong Kozak sequence further attenuates pORF

(GFP) expression (Figure 6). The location of the uAUG in the L 59-

UTR is also critical for translation suppression, since only one of

four constructs with relocated uAUGs represses reporter transla-

tion (Figure 7). It is interesting that the uAUG is predicted to lie at

the top of a stem-loop and is possible that this positioning

contributes to uAUG function (Figure S1). Future studies will

address this possibility. Finally, the L uAUG maintains L

translation in the presence of eIF2a,P, when cap-dependent

translation is impaired (Figure 10 and 11). It will be interesting to

determine if the other EBOV mRNAs with uORFs enhance

translation in the presence of eIF2a,P.

In some respects, the L uORF resembles the arrangement of

ATF4, CHOP, and GCN2 mRNAs, which also encode overlapping

and/or upstream uORFs [43,46,47]. The arrangement of the L 59-

UTR slightly differs from the ATF4 mRNA, which has one

additional upstream uORF and one overlapping uORF, but is

similar to CHOP mRNA, which has a single uORF 25nt upstream

of the pORF [43,47]. In our studies, addition of TG induced

expression from the L 59 UTR construct by 2–3 fold, although in

infected cells where L and VP35 are co-expressed, the differences

may well be greater (see Figure 4). Nonetheless, experiments with

ATF4 and CHOP 59-UTRs enhanced protein expression compa-

rably ([43,47] and Figure 11). It is worth noting that ATF4 protein

levels are very low in the absence of cell stress. In contrast, some

expression of the EBOV L protein must be maintained to sustain

virus replication. Therefore, it is likely that the uORF arrangement

of the EBOV L mRNA provides a mechanism to keep translation of

L low while allowing its upregulation in the presence of eIF2a,P.

This would effectively maintain L expression under cell stress

conditions. Also, at four different doses of TG, we observed a similar

translational maintenance, consistent with previous ATF4 mRNA

studies [43]. Therefore, we propose that the L uORF modulates L

translation by a similar mechanism (modeled in Figure 11E). During

conditions when eIF2-GTP is plentiful, translation initiates more

frequently at the L uAUG. Stress induced eIF2a,P reduces eIF2-

GTP levels and the efficiency of translation initiation. Ribosomal

subunits therefore scan past the L uAUG to the pAUG at a higher

frequency, thereby maintaining L translation.

Experiments with the 59-UTR of CHOP mRNA indicate that

the Kozak sequence governs the ability of a ribosome to bypass the

uAUG during a stress response. The CHOP uAUG is surrounded

by a weak Kozak sequence, and a change to a strong Kozak

context diminishes the effect of the uAUG on pAUG translation

during a stress response. Like CHOP, the L uAUG is located

within a weak Kozak sequence. However, the L uAUG

surrounded by a strong Kozak sequence was still able to modulate

translation at the pAUG during a stress response (Figure 11).

Therefore, the role of the Kozak sequence surrounding the EBOV

L uAUG requires further investigation.

Maintaining translation of L, the only viral protein with

enzymatic activity, may significantly impact virus transcription/

replication in cells that have begun to repress cap-dependent

translation. To this point, our studies clearly demonstrate the

uAUG is critical to maintain virus titers in the presence of cell

stress, since a uAUG mutant virus was more sensitive to TG

treatment (Figure 11D). It is possible that the uORFs in the VP35,

VP30 and VP24 mRNAs serve a similar purpose. Enhanced

expression of VP35 and VP24 could benefit the virus because

these proteins counter innate immune responses, while VP35 and

VP30, like L, are required for viral RNA synthesis ([23,29] and

reviewed in [74]).

Virus infection triggers IFN-a/b production which induces

expression of PKR, a protein that is activated by viral dsRNA and

phosphorylates eIF-2a to inhibit cap-dependent translation

[15,16]. Relevant to our study are experiments that examined

eIF2a,P following VSV infection, the prototype NNS RNA virus

[18–21]. VSV preferentially translates its own mRNAs over

cellular mRNAs before triggering eIF2a,P and a global inhibition

of host cell protein synthesis [18]. Furthermore, it appears that

VSV mRNAs contain cis-acting elements that enhance translation

efficiency, though is it not clear what these elements are [20,21].

Distinct from VSV infection, studies with EBOV indicate that it

does not globally inhibit host cell protein synthesis [19].

Furthermore, EBOV infection suppressed PKR,P in HEK293

cells [32]. In a different study, EBOV infection induced eIF2a,P

and PKR,P in persistently infected mouse cells [34]. It was

proposed that a persistent state might allow maintenance of these

zoonotic pathogens in their reservoir hosts (presumably select bat

species). Notably, inhibiting eIF2a and PKR,P reactivated virus

replication [34]. These observations highlight the fact that

eIF2a,P can have a significant outcome on EBOV replication

in cell culture. However, the specific mechanisms by which levels

of eIF2a,P modulate EBOV persistence in vitro remain to be

defined. The regulation of L translation by its 59-UTR in response

to eIF2a,P suggests that EBOV encodes mechanisms to respond

to cell stress and provides one potential explanation for such

observations.

Regulating EBOV L levels may provide an important balance

during viral replication, as shown in the EBOV minireplicon

polymerase assays and in the recombinant EBOV mutant virus

lacking the uAUG in the L 59-UTR. Our EBOV minireplicon

data agrees with previous work in 293T cells where increasing L

while maintaining VP35, VP30 and NP at specific rations could

impair polymerase activity [58]. Another study demonstrated that

low amounts of L were capable of driving polymerase expression,

though this activity did not diminish with increasing amounts of L

[35]. The latter system used a recombinant vaccinia virus

expressing T7 RNA polymerase in HeLa cells, while our T7

polymerase is expressed from a plasmid in 293T cells. These

experimental differences may account for these apparently

discrepant results. Regardless, all of this data indicate that changes

in L expression outside of a specific range may significantly alter

viral replication.

That L expression levels must be tightly regulated is consistent

with the data obtained with the EBOV L uAUG mutant virus,

the ATF4 59-UTR upstream of firefly luciferase, was separately transfected and serves as a control to monitor activation of a stress response. At 24 hpt,
cells were untreated (U), treated with DMSO (D) or with three doses of Thapsigargin (TG) and harvested at 6.5 hours post treatment. The luciferase ratio
of untreated cells transfected with L-FF was normalized to 1, and this value was also used to normalize the values in the Lsk-FF and Lns-FF transfected
cells. The untreated ATF4 transfected sample was also set to 1. C. Effect of TG on wt and 59-UTR mutant virus replication. A549 cells were infected with
either WT EBOV or the L 59-UTR mutant virus an MOI of 0.1, followed by TG treatment 4 hours post infection. Twenty four hours post-infection, infectious
virus present in the cell supernatants was quantified by TCID50 assay. D. TCID50 values of both viruses treated with either DMSO or with TG at 24 hours
post-infection. E. Model proposing how eIF2a phosphorylation modulates translation initiation at the L uAUG versus the primary AUG in the L mRNA.
During low stress conditions, translation initiation is efficient, resulting in more ribosomes initiating at the L uORF. During times of high stress, translation
initiation is inefficient, resulting in a ribosome scanning past the uAUG and initiating at the pAUG to maintain L translation.
doi:10.1371/journal.ppat.1003147.g011
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which had reduced replication in both Vero and A549 cells. While

the L uAUG mutant virus was able to reach similar titers to the

wildtype virus by day 7 post infection in Vero cells, the difference

in growth was more pronounced in A549 cells where the mutant

virus never reached equivalent titers to that of wildtype EBOV.

One explanation for the enhanced growth defect in A549 cells is

provided by the data in Figure 9, where there is a clear delay in

virus transcription and replication (indicated by differences in virus

mRNA and vRNA levels). While we do not have an antibody to

detect full length L, our transfection studies predict that without

the uORF, L protein expression will be increased under basal

conditions and will not be properly regulated under conditions of

cell stress.

Translation initiation at the uORFs in the L, VP30 and VP24

mRNAs would result in the translation of small peptides in EBOV

infected cells. The L uORF amino acid sequence is conserved

among Zaire EBOV strains, but the sequence is not conserved

between different filovirus species. However, L mRNAs from

multiple filoviruses do possess uORFs. For example, the Reston

EBOV L mRNA (AY769362.1) possesses an overlapping uORF of

24 a.a., and the Sudan EBOV has a uORF that terminates just

27nt upstream of the pORF (NC_006432.1). Sequence analysis

from Marburg virus reveals the L mRNA of the Ravn strain

possesses two uORFs in its 59-UTR (EU500827.1) while the

Angola strain has four uORFs (DQ447659). It is likely these other

uORFs are translated into small peptides in infected cells, and it is

possible that these peptides may perform a specific function(s). In

Drosophila, small peptides derived from a polycistronic mRNA are

required for proper development, since ablating these ORFs

disrupts actin-based cell morphogenesis [75]. Furthermore,

nascent uORF peptides of fungi and yeast can interact with the

ribosome during their translation to inhibit translation at the

pORF [76,77].

Given that the mutation of the L uAUG significantly affects

virus replication in cell culture, it will be of interest to determine

whether the functions of the EBOV 59-UTRs described in this

report influence the outcome of infection in vivo. If so, it is possible

that these unique functions may prove useful as targets for new

therapeutic strategies. The EBOV 59-UTRs may represent

potential targets of antiviral therapy, since antisense RNA

oligomers targeted against flavivirus and coronavirus 59-UTRs

have successfully inhibited virus replication by impairing transla-

tion [78,79]. In addition, studies with antisense oligomers targeting

the pAUGs of EBOV VP35, VP24, and L block translation in

vitro and provide protection in animal models [80]. Our studies

suggest that targeting additional regions of the mRNA, such as the

uAUGs/uORFs in addition to the pAUG may further improve the

efficacy of these treatments.

Materials and Methods

Biosafety and containment
Experiments with live recombinant Ebola viruses were per-

formed in BSL-4 containment at the Rocky Mountain Laborato-

ries (RML), Division of Intramural Research (DIR), National

Institute of Allergy and Infectious Diseases (NIAID), National

Institutes of Health (NIH), USA following Standard Operating

Procedures and approval by the Institutional Biosafety Committee.

DNA constructs generated in this study
A bicistronic reporter construct was generated in the plasmid

pCAGGS [81] and cloned between EcoRI and BglII sites,

organized as follows: EcoRI-firefly luciferase-KpnI-Sac I-

EcoRV-NheI-Renilla luciferase-BglII. Templates for the firefly

and Renilla luciferase were obtained from the plasmids pgl4.20 and

pRLTK (Promega). The EMCV IRES was obtained from the

pCITE-4a(+)-GFP plasmid (Novagen). Each of the EBOV 59-

UTRs (synthesized based on sequences from the strain Mayinga

(AY142960.1)) were introduced in the multiple cloning site (MCS)

between the firefly and Renilla luciferase sequences. GFP reporter

mRNAs cloned into pGEMT (Promega) downstream of either a

EBOV 59-UTR or a b-actin 59-UTR [82] were organized as

follows: T7 promoter-59UTR-SacI-GFP-FLAG. To accommodate

the overlapping L uORF with the GFP ORF, the L 59-UTR was

cloned in the same manner as the other EBOV 59-UTRs, between

the T7 promoter and the SacI restriction site. The resulting

construct preserved the nucleotides coding for the first 11 amino

acids of the L uORF. Nucleotides coding for the C-terminal part

of the uORF differed, as they were derived from both the SacI and

GFP sequence.

An expression plasmid encoding L amino acids 1–505 was

cloned into pCAGGS as follows: SacI-L 59UTR-L, amino acids 1

to 505-FLAG-XhoI. This construct was also generated without the

L uAUG (changed to UUG) in its 59-UTR. An expression plasmid

of L fused to firefly luciferase was constructed as: SacI-L 59UTR-

L, amino acids 1 to 13-firefly luciferase-XhoI.

Cells
293T, VeroE6 and A549 cells were maintained in Dulbecco’s

minimal essential medium with 10% fetal bovine serum and

supplemented with L-glutamine and penicillin/streptomycin. To

generate monocyte-derived human dendritic cells, buffy coats of

anonymous healthy donors were obtained from the New York

Blood Center (Long Island, NY) under approved protocols.

CD14+ monocytes were isolated from buffy coats (MiltenyiBiotec)

and differentiated for 7 days by culturing the cells in RPMI-1640

media supplemented with penicillin, streptomycin, 55 mM b-

mercaptoethanol, 4% human serum AB (GemCell, Gemini Bio-

Products, West Sacramento, CA), 500 U/ml human granulocyte-

macrophage colony-stimulating factor (GM-CSF; Peprotech,

Rocky Hill, NJ) and 500 U/ml human interleukin-4 (IL-4;

Peprotech) [83].

In vitro transcription of mRNAs encoding reporter genes
Each T7-59UTR-GFP-FLAG reporter in pGEMT is flanked by

NotI restriction sites and was excised by a NotI digest. Equivalent

nanograms of each DNA template were used for T7 in vitro

transcription (Ambion, Cat #AM1345). Each transcription

reaction was DNase I treated to remove input template,

polyadenylated, purified and resuspended in water according to

the manufacturer’s instructions. Each RNA sample was quantified,

and equivalent nanogram amounts were reverse transcribed using

random hexamer primers (Qiagen, Cat# 205111). Each cDNA

was then subjected to real time quantitative PCR with primers

specific for GFP (Bio-Rad C1000 Thermal Cycler). In addition,

the quality of the RNA was analyzed by agarose gel electropho-

resis to ensure a single product of the correct size. Both 293T cells

and dendritic cells were transfected using Lipofectamine 2000

(Invitrogen) with either equal copy numbers of mRNA (deter-

mined by real time PCR) or equal nanograms of mRNA (both

methods produced similar results). Cells were analyzed for GFP

expression by flow cytometry and the mean fluorescence intensity

of the GFP positive cells was determined for each group. Also total

RNA was isolated from cells (Qiagen, Cat# 74104), and levels of

GFP mRNA were determined by real time RT-PCR from the

same cells subject to FACS analysis. GFP signal was normalized to

either 18S ribosomal RNA or b-actin mRNA using primers

previously described [84].
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Western blots to measure levels of FLAG-tagged proteins
To measure the levels of pCAGGS L 1–505 with a C-terminal

FLAG-tag, 293T cells were transfected with pCAGGS-GFP-

FLAG, pCAGGS-VP35-FLAG, or pCAGGS L 1–505-FLAG by

using Lipofectamine 2000 (Invitrogen). At 24 hours post transfec-

tion, cells were harvested, washed in phosphate-buffered saline

(PBS) and lysed in NP-40 lysis buffer (50 mMTris [pH 7.5],

280 mM NaCl, 0.5% NP-40, 0.2 mM EDTA, 2 mM EGTA, 10%

glycerol, and protease inhibitors [Complete; Roche]). Lysates were

incubated on ice for 30 min, centrifuged for 10 min at 4uC in a

microcentrifuge, and the supernatants collected. Samples were

subjected to polyacrylamide gel electrophoresis and then trans-

ferred to a polyvinylidenedifluoride membrane. The membrane

was blocked in 5% nonfat dry milk, 0.1% Tween 20 in PBS, and

then probed with a monoclonal mouse M2 a-Flag primary

antibody and a goat a-mouse secondary antibody (Sigma).

Membranes were developed using a Western Lightning ECL kit

(Perkin-Elmer) and BioMax film (Kodak).

Thapsigargin treatment and dual luciferase assays
pCAGGS plasmids expressing the first 13 amino acids of L

fused to firefly luciferase both with and without the uAUG were

transfected into 293T or A549 cells. As a transfection and

experimental control, pRLTK (Promega) expressing Renilla

luciferase was also transfected. At 24 hours post transfection, cells

were treated with thapsigargin (TG, Sigma, Cat# T9033) and

then harvested at the indicated hours post treatment for a dual

luciferase assay (Promega, Cat # E1960). The firefly/Renilla

luciferase ratio was then determined for each group. Experiments

were designed based on published studies [43,47]. To measure the

level of TG-induced eIF2-a phosphorylation, lysates generated

during the dual luciferase assay were subjected to western blot

analysis using a phosphospecific anti-eIF2a antibody (Invitrogen,

Cat# 44728G) and an antibody for total eIF2a (Cell Signaling,

Cat# 9722).

EBOV transcription/replication assays
The plasmids used in the EBOV transcription/replication

assays were described previously [57,85]. The coding sequences of

L and the other viral proteins were cloned into pTM1 (no virus-

derived UTRs were present).

EBOV rescues and infections
A cDNA copy of the full length genome of EBOV (strain

Mayinga) flanked by a T7 promoter and a hepatitis delta ribozyme

and T7 terminator was cloned into pAmp [86]. For cloning

purposes and to serve as genetic markers 4 nucleotides within the

NP (c2149g, all positions correspond to the viral genome), VP24

(a11043g) and L (c13194g, c15639g) ORFs were silently mutated,

and the resulting plasmid was designate pAmp-rgEBOV. Virus

rescued from this plasmid showed identical growth kinetics to a

recombinant EBOV without these mutations. To generate a

cDNA clone for the mutant virus, a subgenomic fragment of the

genome was subcloned into pKan, the L uAUG mutated (a11547t,

t11548c), and cloned back into pAmp (pAmp-rgEBOV-Mut). Both

wildtype rgEBOV and mutant rgEBOV-Mut were rescued in

VeroE6 cells as previously described [86]. Briefly, 50% confluent

VeroE6 cells were transfected using Transit LT1 (Mirus, cat

#MIR 2300) according to the manufacturer’s instructions with the

following plasmids: 125 ng pCAGGS-NP, 125 ng pCAGGS-

VP35, 75 ng pCAGGS-VP30, 1000 ng pCAGGS-L, 250 ng

pCAGGS-T7, 250 ng full-length plasmid. 24 hours post transfec-

tion the medium was exchanged, and after 7 days supernatant was

transferred onto fresh VeroE6 cells. Upon development of

cytopathic effect (after 7–14 days) supernatant from these cells

was clarified and stocks frozen in liquid nitrogen. RNA from these

stocks was isolated and the entire genome was sequenced to ensure

there were no unwanted mutations. For virus growth curves, both

Vero and A549 cells were infected with each virus at a MOI of

0.005 and supernatant was harvested each day for 7 days. Virus

titers were measured by tissue culture infectious dose 50 in VeroE6

cells. To measure viral RNA levels, RNA from infected A549 cells

(MOI of 1) was isolated at 6, 12 and 24 hours post infection. To

produce cDNA specific for genomic (negative sense) RNA, total

RNA was reverse transcribed in independent reactions with six

primers, each complementary to the negative sense genomic RNA

(Invitrogen, cat #18080-051). To produce cDNA specific for

messenger RNA, mRNA was first isolated from total RNA

(Invitrogen, cat# 610.06) and the mRNA fraction was reverse

transcribed. Real time PCR with validated primer pairs specific to

the EBOV genome were developed to quantify the relative

amounts of each RNA species. Sequences of the primer pairs are

listed in Table S2 and standard curves generated with these

primers off of DNA plasmids corresponding to each EBOV gene

are displayed in Figure S3.

Supporting Information

Figure S1 RNA secondary structure in the L 59-UTR is
not significantly altered with the uAUGRuUUG or uUCG
codon mutations. Secondary structure analysis of uORF

sequences shows minimum impact of uAUG mutants. (A)

Wildtype (B) mut1 (UCG) and (C) mut2 (UUG) sequences show

similar minimum free energy (MFE) secondary structures. Base

pairing probabilities for each of the sequences are shown on the

right. The top triangle of the box matrix dot plot represents the

ensemble structures, with the size of the box within the matrix

corresponding to the relative probability of forming a base pair

within a given secondary structure in the ensemble. The lower

triangle represents the base pairing of the MFE secondary

structure. Sequence corresponding to AUG, UCG and UUG,

residues mutated within the uAUG sequence are highlighted by

light green, cyan, and pink color, respectively.

(EPS)

Figure S2 Growth kinetics of WT EBOV and the L 59-
UTR uAUG mutant EBOV at a multiplicity of infection of
0.1. A. Vero cells were infected in triplicate with both

recombinant viruses at an MOI of 0.1. B. A549 cells were

infected with both recombinant viruses at an MOI of 0.1. Each

day, supernatant was harvested and TCID50 titers were

determined on Vero cells. Each bar represents the means of

triplicate samples.

(EPS)

Figure S3 Primer pairs for PCR amplification of each of
the EBOV genes exhibit similar amplification efficien-
cies. Primers specific for each of the seven EBOV transcriptional

units were designed and validated on linearized DNA plasmids

encoding each of the seven genes. Plasmids were normalized for

absolute copy number and each was diluted in serial 10-fold steps.

An aliquot of each dilution was used for quantitative PCR. The

cycle threshold (CT) number is plotted on the Y-axis while the

plasmid copy number is plotted on the Y-axis. Primer efficiencies

of each of the seven primer pairs were determined to be over 95%.

(EPS)

Table S1 A summary of the results obtained for the
computational secondary structure analysis. Low ensem-
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ble diversity and good correspondence in the between the MFE

free energy and ensemble free energy for all three structures

suggest a high confidence for the proposed secondary structures.

Of note, all three structures have similar values and computational

studies suggest a low probability of impact on the secondary

structure due to mutations near the uAUG.

(DOCX)

Table S2 Primer sequences used in this study.

(DOCX)
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