24 research outputs found

    Recommendations for respiratory syncytial virus surveillance at national level

    Get PDF
    Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes

    Results from recent detachment experiments in alternative divertor configurations on TCV

    Get PDF
    Divertor detachment is explored on the TCV tokamak in alternative magnetic geometries. Starting from typical TCV single-null shapes, the poloidal flux expansion at the outer strikepoint is varied by a factor of 10 to investigate the X-divertor characteristics, and the total flux expansion is varied by 70% to study the properties of the super-X divertor. The effect of an additional X-point near the target is investigated in X-point target divertors. Detachment of the outer target is studied in these plasmas during Ohmic density ramps and with the ion ∇B drift away from the primary X-point. The detachment threshold, depth of detachment, and the stability of the radiation location are investigated using target measurements from the wall-embedded Langmuir probes and two-dimensional CIII line emissivity profiles across the divertor region, obtained from inverted, toroidally-integrated camera data. It is found that increasing poloidal flux expansion results in a deeper detachment for a given line-averaged density and a reduction in the radiation location sensitivity to core density, while no large effect on the detachment threshold is observed. The total flux expansion, contrary to expectations, does not show a significant influence on any detachment characteristics in these experiments. In X-point target geometries, no evidence is found for a reduced detachment threshold despite a 2-3 fold increase in connection length. A reduced radiation location sensitivity to core plasma density in the vicinity of the target X-point is suggested by the measurements

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added

    Degradation of polycaprolactone electrospun materials - methods of analysis

    No full text
    Biodegradable electrospun materials are widely used for medical application. Polycaprolatone is polymer suitable for electrospinning technology and is very often used to create nanofibrous scaffolds for tissue engineering. The time to disintegration or biodegradation of such materials is very important here. However, testing is not entirely easy. It is not possible to create exactly body-like conditions in vitro. Moreover, it is not easy to find suitable analytical methods that would show exactly what happens in the nanofibrous polycaprolactone electrospun samples at certain stages of degradation, ie how the internal structure of decaying nanofibers changes. This paper describes the traditional use of methods for testing polycaprolatone nanofibers by enzymatically catalysed degradation. Morphological changes are studied using scanning electron microscope images. However, it also offers a non-traditional analysis of polycaprolactone electrospun materials using the ssNMR method
    corecore