101 research outputs found

    WMH and long-term outcomes in ischemic stroke

    Get PDF
    Objective To investigate the relationship between baseline white matter hyperintensities (WMH) in patients with ischemic stroke and long-term risk of dementia, functional impairment, recurrent stroke, and mortality. Methods Following the Meta-analysis of Observational Studies in Epidemiology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO protocol: CRD42018092857), we systematically searched Medline and Scopus for cohort studies of ischemic stroke patients examining whether MRI- or CT-assessed WMH at baseline are associated with dementia, functional impairment, recurrent stroke, and mortality at 3 months or later poststroke. We extracted data and evaluated study quality with the Newcastle–Ottawa scale. We pooled relative risks (RR) for the presence and severity of WMH using random-effects models. Results We included 104 studies with 71,298 ischemic stroke patients. Moderate/severe WMH at baseline were associated with increased risk of dementia (RR 2.17, 95% confidence interval [CI] 1.72–2.73), cognitive impairment (RR 2.29, 95% CI 1.48–3.54), functional impairment (RR 2.21, 95% CI 1.83–2.67), any recurrent stroke (RR 1.65, 95% CI 1.36–2.01), recurrent ischemic stroke (RR 1.90, 95% CI 1.26–2.88), all-cause mortality (RR 1.72, 95% CI 1.47–2.01), and cardiovascular mortality (RR 2.02, 95% CI 1.44–2.83). The associations followed dose-response patterns for WMH severity and were consistent for both MRI- and CT-defined WMH. The results remained stable in sensitivity analyses adjusting for age, stroke severity, and cardiovascular risk factors, in analyses of studies scoring high in quality, and in analyses adjusted for publication bias. Conclusions Presence and severity of WMH are associated with substantially increased risk of dementia, functional impairment, stroke recurrence, and mortality after ischemic stroke. WMH may aid clinical prognostication and the planning of future clinical trials

    The Primacy Effect in Amnestic Mild Cognitive Impairment: Associations with Hippocampal Functional Connectivity

    Get PDF
    Background: The “primacy effect,” i.e., increased memory recall for the first items of a series compared to the following items, is reduced in amnestic mild cognitive impairment (aMCI). Memory task-fMRI studies demonstrated that primacy recall is associated with higher activation of the hippocampus and temporo-parietal and frontal cortical regions in healthy subjects. Functional magnetic resonance imaging (fMRI) at resting state revealed that hippocampus functional connectivity (FC) with neocortical brain areas, including regions of the default mode network (DMN), is altered in aMCI. The present study aimed to investigate whether resting state fMRI FC between the hippocampus and cortical brain regions, especially the DMN, is associated with primacy recall performance in aMCI. Methods: A number of 87 aMCI patients underwent resting state fMRI and verbal episodic memory assessment. FC between the left or right hippocampus, respectively, and all other voxels in gray matter was mapped voxel-wise and used in whole-brain regression analyses, testing whether FC values predicted delayed primacy recall score. The delayed primacy score was defined as the number of the first four words recalled on the California Verbal Learning Test. Additionally, a partial least squares (PLS) analysis was performed, using DMN regions as seeds to identify the association of their functional interactions with delayed primacy recall. Results: Voxel-based analyses indicated that delayed primacy recall was mainly (positively) associated with higher FC between the left and right hippocampus. Additionally, significant associations were found for higher FC between the left hippocampus and bilateral temporal cortex, frontal cortical regions, and for higher FC between the right hippocampus and right temporal cortex, right frontal cortical regions, left medial frontal cortex and right amygdala (p < 0.01, uncorr.). PLS analysis revealed positive associations of delayed primacy recall with FC between regions of the DMN, including the left and right hippocampus, as well as middle cingulate cortex and thalamus (p < 0.04). In conclusion, in the light of decreased hippocampus function in aMCI, inter-hemispheric hippocampus FC and hippocampal FC with brain regions predominantly included in the DMN may contribute to residual primacy recall in aMCI

    Self-similar chain conformations in polymer gels

    Full text link
    We use molecular dynamics simulations to study the swelling of randomly end-cross-linked polymer networks in good solvent conditions. We find that the equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand lengths N_s exceeding the melt entanglement length N_e. The internal structure of the network strands in the swollen state is characterized by a new exponent nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory argument for a self-similar structure of mutually interpenetrating network strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand length.Comment: 4 pages, RevTex, 3 Figure

    Neuronal correlates of serial position performance in amnestic mild cognitive impairment.

    Get PDF
    Objectives: Delayed recall of the first words of a list - the primacy position – is thought to be particularly dependent on intact memory consolidation. Hippocampal volume has been suggested as the primary neuronal correlate of delayed primacy recall in cognitively normal elderly individuals. Here, we studied the association of hippocampal volume with primacy recall in individuals with amnestic mild cognitive impairment (aMCI). Methods: We investigated serial position performance in 88 subjects with aMCI using a 16-word list (CVLT). Primacy and recency performance were measured during learning and delayed recall. Hippocampal volumes were automatically determined from structural MRI scans. We conducted regression analyses with bilateral hippocampal volumes as predictors and serial position indices as outcomes. Results: After controlling for age, gender, and total intracranial volume, bilateral hippocampal volume was not associated with primacy recall either during learning or delayed recall. Primacy performance during learning was associated with the right inferior and middle temporal gyrus as well as the right inferior parietal cortex and supramerginal gyrus. During delayed recall, primacy performance was related to the bilateral supramarginal gyri. Conclusions: Our findings suggest a reduced primacy effect in aMCI already during learning, contrasting previous findings in normal cognitive aging. This might indicate impaired encoding and consolidation processes at an early stage of episodic memory acquisition. Furthermore, our data indicates that hippocampal volume may not be a relevant determinant of residual primacy performance in the stage of aMCI, which may rather depend on temporal and parietal neocortical networks

    Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations

    Full text link
    The mechanical properties of a polymeric network containing both crosslinks and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics simulation. We coarse-grain at the level of chain segments connecting consecutive nodes (cross- or sliplinks), with particular attention to the Gaussian statistics of the network. Affine displacement of nodes is not imposed: their displacement as well as sliding of monomers through sliplinks is governed by force balances. The simulation results of stress in uniaxial extension and the full stress tensor in simple shear including the (non-zero) second normal stress difference are presented for monodisperse chains with up to 18 entanglements between two crosslinks. The cases of two different force laws of the subchains (Gaussian chains and chains with finite extensibility) for two different numbers of monomers in a subchain (no = 50 and no = 100) are examined. It is shown that the additivity assumption of slip- and crosslink contribution holds for sufficiently long chains with two or more entanglements, and that it can be used to construct the strain response of a network of infinitely long chains. An important consequence is that the contribution of sliplinks to the small-strain shear modulus is about &#8532; of the contribution of a crosslink

    Differences in cerebral small vessel disease magnetic resonance imaging markers between lacunar stroke and non Lobar intracerebral hemorrhage

    Get PDF
    Introduction: It is unclear why cerebral small vessel disease (SVD) leads to lacunar stroke in some and to non-lobar intracerebral hemorrhage (ICH) in others. We investigated differences in MRI markers of SVD in patients with lacunar stroke or non-lobar ICH.Patients and methods: We included patients from two prospective cohort studies with either lacunar stroke (RUN DMC) or non-lobar ICH (FETCH). Differences in SVD markers (white matter hyperintensities [WMH], lacunes, cerebral microbleeds [CMB]) between groups were investigated with univariable tests; multivariable logistic regression analysis, adjusted for age, sex, and vascular risk factors; spatial correlation analysis and voxel-wise lesion symptom mapping.Results: We included 82 patients with lacunar stroke (median age 63, IQR 57-72) and 54 with non-lobar ICH (66, 59-75). WMH volumes and distribution were not different between groups. Lacunes were more frequent in patients with a lacunar stroke (44% vs. 17%, adjusted odds ratio [aOR] 5.69, 95% CI [1.66-22.75]) compared to patients with a non-lobar ICH. CMB were more frequent in patients with a non-lobar ICH (71% vs. 23%, aOR for lacunar stroke vs non-lobar ICH 0.08 95% CI [0.02-0.26]), and more often located in non-lobar regions compared to CMB in lacunar stroke.Discussion: Although we obserd different types of MRI markers of SVD within the same patient, ischemic markers of SVD were more frequent in the ischemic type of lacunar stroke, and hemorrhagic markers were more prevalent in the hemorrhagic phenotype of non-lobar ICH.Conclusion: There are differences between MRI markers of SVD between patients with a lacunar stroke and those with a non-lobar ICH.Paroxysmal Cerebral Disorder

    Brain Structural Networks Associated with Intelligence and Visuomotor Ability

    Get PDF
    Increasing evidence indicates that multiple structures in the brain are associated with intelligence and cognitive function at the network level. The association between the grey matter (GM) structural network and intelligence and cognition is not well understood. We applied a multivariate approach to identify the pattern of GM and link the structural network to intelligence and cognitive functions. Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based morphometry analysis was applied to the imaging data to extract GM structural covariance. We assessed the intelligence, verbal fluency, processing speed, and executive functioning of the participants and further investigated the correlations of the GM structural networks with intelligence and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component and the frontal component were significantly associated with intelligence. The parietal and frontal regions were each distinctively associated with intelligence by maintaining structural networks with the cerebellum and the temporal region, respectively. The cerebellar component was associated with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by demonstrating how each core region for intelligence works in concert with other regions. In addition, we revealed how the cerebellum is associated with intelligence and cognitive functions

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226

    The Meta VCI Map consortium for meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping: design and multicenter pilot study

    Get PDF
    Introduction: The Meta VCI Map consortium performs meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping. Integration of data from different cohorts will increase sample sizes, to improve brain lesion coverage and support comprehensive lesion-symptom mapping studies. Methods: Cohorts with available imaging on white matter hyperintensities or infarcts and cognitive testing were invited. We performed a pilot study to test the feasibility of multicenter data processing and analysis and determine the benefits to lesion coverage. Results: Forty-seven groups have joined Meta VCI Map (stroke n = 7800 patients; memory clinic n = 4900; population-based n = 14,400). The pilot study (six ischemic stroke cohorts, n = 878) demonstrated feasibility of multicenter data integration (computed tomography/magnetic resonance imaging) and achieved marked improvement of lesion coverage. Discussion: Meta VCI Map will provide new insights into the relevance of vascular lesion location for cognitive dysfunction. After the successful pilot study, further projects are being prepared. Other investigators are welcome to join
    corecore