591 research outputs found

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below ≈\approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    Full text link
    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise

    Suppression of ablation in femtosecond double pulse experiments

    Full text link
    We report the physical reasons of a curious decrease in the crater depth observed for long delays in experiments with femtosecond double pulses. Detailed hydrodynamic modeling demonstrates that the ablation mechanism is dumped when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The evidence of this effect follows from the pressure and density profiles obtained at different delays after the first laser pulse.Comment: Submitted to one of the APS Journal

    The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw

    Get PDF
    Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Intrinsic response time of graphene photodetectors

    Get PDF
    Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts, it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ~262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power

    Multicentre study to establish interpretive criteria for clofazimine drug susceptibility testing

    Get PDF
    To conduct a multicentre study to establish the critical concentration (CC) for clofazimine (CFZ) for drug susceptibility testing (DST) of Mycobacterium tuberculosis on the MGIT™960™ system using the distribution of minimum inhibitory concentrations (MIC) and genotypic analyses of Rv0678 mutations. In phase I of the study, the MIC distribution of laboratory strains (H37Rv and in vitro-selected Rv0678 mutants) and clinical pan-susceptible isolates were determined (n = 70). In phase II, a tentative CC for CFZ (n = 55) was proposed. In phase III, the proposed CC was validated using clinical drug-resistant tuberculosis (DR-TB) isolates stratified by Rv0678 mutation (n = 85). The MIC distribution of CFZ for laboratory and clinical pan-susceptible strains ranged between 0.125 μg/ml and 0.5 μg/ml. As the MIC values of DR-TB isolates used for phase II ranged between 0.25 μg/ml and 1 μg/ml, a CC of 1 μg/ml was proposed. Validation of the CC in phase III showed that probably susceptible and probably resistant Rv0678 mutants overlapped at 1 μg/ml. We therefore recommend a CC of 1 μg/ml, with additional testing at 0.5 μg/ml to define an intermediate category. This was the first comprehensive study to establish a CC for routine phenotypic DST of CFZ using the MGIT960 system to guide therapeutic decisions.https://www.ingentaconnect.com/content/iuatld/ijtld2019-11-01hj2019Medical Microbiolog
    • …
    corecore