We present a theoretical study of transient absorption and reshaping of
extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately
strong infrared (IR) laser field. We formulate the atomic response using both
the frequency-dependent absorption cross section and a time-frequency approach
based on the time-dependent dipole induced by the light fields. The latter
approach can be used in cases when an ultrafast dressing pulse induces
transient effects, and/or when the atom exchanges energy with multiple
frequency components of the XUV field. We first characterize the dressed atom
response by calculating the frequency-dependent absorption cross section for
XUV energies between 20 and 24 eV for several dressing wavelengths between 400
and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing
wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p
transition that can potentially lead to transparency for absorption of XUV
light tuned to this transition. We study the effect of this XUV transparency in
a macroscopic helium gas by incorporating the time-frequency approach into a
solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal
reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p
transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser
pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise