181 research outputs found

    Hunting for dark halo substructure using submilliarcsecond-scale observations of macrolensed radio jets

    Full text link
    Dark halo substructure may reveal itself through secondary, small-scale gravitational lensing effects on light sources that are macrolensed by a foreground galaxy. Here, we explore the prospects of using Very Long Baseline Interferometry (VLBI) observations of multiply-imaged quasar jets to search for submilliarcsecond-scale image distortions produced by various forms of dark substructures in the 1e3-1e8 Msolar mass range. We present lensing simulations relevant for the angular resolutions attainable with the existing European VLBI Network (EVN), the global VLBI array, and an upcoming observing mode in which the Atacama Large Millimeter Array (ALMA) is connected to the global VLBI array. While observations of this type would not be sensitive to standard cold dark matter subhalos, they can be used to detect more compact forms of halo substructure predicted in alternative structure formation scenarios. By mapping ~5 strongly lensed systems, it should be possible to detect or robustly rule out primordial black holes in the 1e3-1e6 Msolar mass range if they constitute >1% percent of the dark matter in these lenses. Ultracompact minihalos are harder to detect using this technique, but 1e6-1e8 Msolar ultracompact minihalos could in principle be detected if they constitute >10% of the dark matter.Comment: 13 pages, 8 figures; v.2 accepted for publication in MNRA

    Response of Solidago canadensis clones to competition

    Full text link
    Transplants of ten Solidago canadensis clones were grown under high and low competition in the field to determine whether clones differed in survival, growth, and reproduction under natural conditions. Transplants had higher probability of survival and flowering and were larger in all measures of size when competition was experimentally reduced. Clones differed in almost all these measures of success, but only when variance among transplants within clones was reduced by excluding transplants that experienced heavy herbivore damage. Differences among clones were more apparent under low competition than under high competition, despite higher coefficients of variation within clones under low competition. Adjusting transplant size for initial size (parent ramet rhizome mass) did not change these results, although clones did differ in parent rhizome mass. All of these results suggest that there is little potential for selection to discriminate among these clones. Despite the strong differences in transplant performance between the competition treatments and among clones, the clones did not differ in competitive ability-almost none of the clone x competition interactions were significant. In addition, the measures of success of each clone were usually positively correlated between the high and low competition treatments, suggesting there were no tradeoffs between performance under high and low competition for these clones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47776/1/442_2004_Article_BF00378042.pd

    Metabolomics Unravel Contrasting Effects of Biodiversity on the Performance of Individual Plant Species

    Get PDF
    In spite of evidence for positive diversity-productivity relationships increasing plant diversity has highly variable effects on the performance of individual plant species, but the mechanisms behind these differential responses are far from being understood. To gain deeper insights into the physiological responses of individual plant species to increasing plant diversity we performed systematic untargeted metabolite profiling on a number of herbs derived from a grassland biodiversity experiment (Jena Experiment). The Jena Experiment comprises plots of varying species number (1, 2, 4, 8, 16 and 60) and number and composition of functional groups (1 to 4; grasses, legumes, tall herbs, small herbs). In this study the metabolomes of two tall-growing herbs (legume: Medicago x varia; non-legume: Knautia arvensis) and three small-growing herbs (legume: Lotus corniculatus; non-legumes: Bellis perennis, Leontodon autumnalis) in plant communities of increasing diversity were analyzed. For metabolite profiling we combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and UPLC coupled to FT-ICR-MS (LC-FT-MS) analyses from the same sample. This resulted in several thousands of detected m/z-features. ANOVA and multivariate statistical analysis revealed 139 significantly changed metabolites (30 by GC-TOF-MS and 109 by LC-FT-MS). The small-statured plants L. autumnalis, B. perennis and L. corniculatus showed metabolic response signatures to increasing plant diversity and species richness in contrast to tall-statured plants. Key-metabolites indicated C- and N-limitation for the non-leguminous small-statured species B. perennis and L. autumnalis, while the metabolic signature of the small-statured legume L. corniculatus indicated facilitation by other legumes. Thus, metabolomic analysis provided evidence for negative effects of resource competition on the investigated small-statured herbs that might mechanistically explain their decreasing performance with increasing plant diversity. In contrast, taller species often becoming dominant in mixed plant communities did not show modified metabolite profiles in response to altered resource availability with increasing plant diversity. Taken together, our study demonstrates that metabolite profiling is a strong diagnostic tool to assess individual metabolic phenotypes in response to plant diversity and ecophysiological adjustment

    Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy old‐fields

    Get PDF
    Question: Spontaneous succession is the most natural and cost‐effective solution for grassland restoration. However, little is known about the time required for the recovery of grassland functionality, i.e., for the recovery of reproductive and vegetative processes typical of pristine grasslands. Since these processes operate at different scales, we addressed the question: do reproductive and vegetative processes require different recovery times during spontaneous succession? Location: Kiskunság sand region (Central Hungary). Methods: As combinations of plant traits can be used to highlight general patterns in ecological processes, we compared reproductive (pollination‐ and dispersal‐related) and vegetative (growth form) traits between recovered grasslands of different age (<10 years old; 10–20 years old; 20–40 years old) and pristine grasslands. Results: During spontaneous succession, the reproductive trait spectra became similar to those of pristine grasslands earlier than the vegetative ones. In arable land abandoned for 10 years, pollination‐ and dispersal‐related trait spectra did not show significant difference to those of pristine grasslands; anemophily and anemochory were the prevailing strategies. Contrarily, significant differences in the growth form spectrum could be observed even after 40 years of abandonment; in recovered grasslands erect leafy species prevailed, while the fraction of dwarf shrubs and tussock‐forming species was significantly lower than in pristine grasslands. Conclusions: The recovery of the ecological processes of pristine grasslands might require different amounts of time, depending on the spatial scale at which they operate. The reproductive trait spectra recovered earlier than the vegetative one, since reproductive attributes first determine plant species sorting at the regional level towards their respective habitats. The recovery of the vegetative trait spectrum needs more time as vegetative‐based interactions operate on a smaller spatial scale. Thus, vegetative traits might be more effective in the long‐term assessment of restoration success than the reproductive ones

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production

    Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term

    Get PDF
    One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning
    corecore