51 research outputs found

    A Search for Young Stars in the S0 Galaxies of a Super-Group at z=0.37

    Get PDF
    We analyze Galaxy Evolution Explorer UV data for a system of four gravitationally bound groups at z = 0.37, SG1120, which is destined to merge into a Coma-mass cluster by z = 0, to study how galaxy properties may change during cluster assembly. Of the 38 visually classified S0 galaxies, with masses ranging from log (M *)[M ☉] ≈ 10-11, we detect only one in the near-UV (NUV) channel, a strongly star-forming S0 that is the brightest UV source with a measured redshift placing it in SG1120. Stacking the undetected S0 galaxies (which generally lie on or near the optical red sequence of SG1120) still results in no NUV/far-UV (FUV) detection (\u3c2σ). Using our limit in the NUV band, we conclude that for a rapidly truncating star formation rate, star formation ceased at least ~0.1-0.7 Gyr ago, depending on the strength of the starburst prior to truncation. With an exponentially declining star formation history over a range of timescales, we rule out recent star formation over a wide range of ages. We conclude that if S0 formation involves significant star formation, it occurred well before the groups were in this current pre-assembly phase. As such, it seems that S0 formation is even more likely to be predominantly occurring outside of the cluster environment

    Preprocessing Among the Infalling Galaxy Population of EDisCS Clusters

    Get PDF
    We present results from a low-resolution spectroscopic survey for 21 galaxy clusters at 0.4<z<0.80.4 < z < 0.8 selected from the ESO Distant Cluster Survey. We measured spectra using the low-dispersion prism in IMACS on the Magellan Baade telescope and calculate redshifts with an accuracy of σz=0.007\sigma_z = 0.007. We find 1763 galaxies that are brighter than R=22.9R = 22.9 in the large-scale cluster environs. We identify the galaxies expected to be accreted by the clusters as they evolve to z=0z = 0 using spherical infall models and find that 30%\sim30\% to 70%\sim70\% of the z=0z = 0 cluster population lies outside the virial radius at z0.6z \sim 0.6. For analogous clusters at z=0z = 0, we calculate that the ratio of galaxies that have fallen into the clusters since z0.6z \sim 0.6 to those that were already in the core at that redshift is typically between 0.3\sim0.3 and 1.51.5. This wide range of ratios is due to intrinsic scatter and is not a function of velocity dispersion, so a variety of infall histories is to be expected for clusters with current velocity dispersions of 300σ1200300 \lesssim\sigma\lesssim 1200 km s1^{-1}. Within the infall regions of z0.6z \sim 0.6 clusters, we find a larger red fraction of galaxies than in the field and greater clustering among red galaxies than blue. We interpret these findings as evidence of "preprocessing", where galaxies in denser local environments have their star formation rates affected prior to their aggregation into massive clusters, although the possibility of backsplash galaxies complicates the interpretation.Comment: Accepted for publication in Ap

    LBT/LUCIFER Observations of the z~2 Lensed Galaxy J0900+2234

    Full text link
    We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z=2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared instrument mounted on the Large Binocular Telescope (LBT). We fit lens models to the rest-frame optical images and find the galaxy has an intrinsic effective radius of 7.4 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high S/N rest-frame optical spectra covering H+K band, we detected Hbeta, OIII, Halpha, NII and SII emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction towards the ionized HII regions (E_g(B-V)) is computed from the flux ratio of Halpha and Hbeta and appears to be much higher than that towards stellar continuum (E_s(B-V)), derived from the optical and NIR broad band photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5-1/3 solar abundance, which is much lower than the typical z~2 star-forming galaxies. From the flux ratio of SII 6717 and 6732, we found that the electron number density of the HII regions in the high-z galaxy were >1000 cm^-3, consistent with other z~2 galaxies but much higher than that in local HII regions. The star-formation rate was estimated via the Halpha luminosity, after correction for the lens magnification, to be about 365\pm69 Msun/yr. Combining the FWHM of Halpha emission lines and the half-light radius, we found the dynamical mass of the lensed galaxy is 5.8\pm0.9x10^10 Msun. The gas mass is 5.1\pm1.1x10^10~Msun from the H\alpha flux surface density by using global Kennicutt-Schmidt Law, indicating a very high gas fraction of 0.79\pm0.19 in J0900+2234.Comment: 11 pages, 6 figures accepted by ApJ, revised based on referee repor

    The Environmental Dependence of the Evolving S0 Fraction

    Get PDF
    We reinvestigate the dramatic rise in the S0 fraction, f_S0, within clusters since z ~ 0.5. In particular, we focus on the role of the global galaxy environment on f_S0 by compiling, either from our own observations or the literature, robust line-of-sight velocity dispersions, sigma's, for a sample of galaxy groups and clusters at 0.1 < z < 0.8 that have uniformly determined, published morphological fractions. We find that the trend of f_S0 with redshift is twice as strong for sigma < 750 km/s groups/poor clusters than for higher-sigma, rich clusters. From this result, we infer that over this redshift range galaxy-galaxy interactions, which are more effective in lower-sigma environments, are more responsible for transforming spiral galaxies into S0's than galaxy-environment processes, which are more effective in higher-sigma environments. The rapid, recent growth of the S0 population in groups and poor clusters implies that large numbers of progenitors exist in low-sigma systems at modest redshifts (~ 0.5), where morphologies and internal kinematics are within the measurement range of current technology.Comment: Accepted for publication in The Astrophysical Journal. 13 pages, 6 figure

    Intracluster supernovae in the Multi-epoch Nearby Cluster Survey

    Full text link
    The Multi-Epoch Nearby Cluster Survey (MENeaCS) has discovered twenty-three cluster Type Ia supernovae (SNe) in the 58 X-ray selected galaxy clusters (0.05 < z < 0.15) surveyed. Four of our SN Ia events have no host galaxy on close inspection, and are likely intracluster SNe. Deep image stacks at the location of the candidate intracluster SNe put upper limits on the luminosities of faint hosts, with M_{r} > -13.0 mag and M_{g} > -12.5 mag in all cases. For such limits, the fraction of the cluster luminosity in faint dwarfs below our detection limit is <0.1%, assuming a standard cluster luminosity function. All four events occurred within ~600 kpc of the cluster center (projected), as defined by the position of the brightest cluster galaxy, and are more centrally concentrated than the cluster SN Ia population as a whole. After accounting for several observational biases that make intracluster SNe easier to discover and spectroscopically confirm, we calculate an intracluster stellar mass fraction of 0.16^{+0.13}_{-0.09} (68% CL) for all objects within R_{200}. If we assume that the intracluster stellar population is exclusively old, and the cluster galaxies themselves have a mix of stellar ages, we derive an upper limit on the intracluster stellar mass fraction of <0.47 (84% one-sided CL). When combined with the intragroup SNe results of McGee & Balogh, we confirm the declining intracluster stellar mass fraction as a function of halo mass reported by Gonzalez and collaborators. (Abridged)Comment: 24 pages, 8 figures, ApJ publishe

    The Multi-Epoch Nearby Cluster Survey: type Ia supernova rate measurement in z~0.1 clusters and the late-time delay time distribution

    Full text link
    We describe the Multi-Epoch Nearby Cluster Survey (MENeaCS), designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 < z < 0.15. Utilizing our real time analysis pipeline, we spectroscopically confirmed twenty-three cluster SN Ia, four of which were intracluster events. Using our deep CFHT/Megacam imaging, we measured total stellar luminosities in each of our galaxy clusters, and we performed detailed supernova detection efficiency simulations. Bringing these ingredients together, we measure an overall cluster SN Ia rate within R_{200} (1 Mpc) of 0.042^{+0.012}_{-0.010}^{+0.010}_{-0.008} SNuM (0.049^{+0.016}_{-0.014}^{+0.005}_{-0.004} SNuM) and a SN Ia rate within red sequence galaxies of 0.041^{+0.015}_{-0.015}^{+0.005}_{-0.010} SNuM (0.041^{+0.019}_{-0.015}^{+0.005}_{-0.004} SNuM). The red sequence SN Ia rate is consistent with published rates in early type/elliptical galaxies in the `field'. Using our red sequence SN Ia rate, and other cluster SNe measurements in early type galaxies up to z1z\sim1, we derive the late time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early type galaxy star formation epoch of z_f=3. Assuming a power law form for the DTD, \Psi(t)\propto t^s, we find s=-1.62\pm0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s\sim-1), and is also in line with recent calculations for the double detonation explosion mechanism (s\sim-2). The most recent calculations of the single degenerate scenario delay time distribution predicts an order of magnitude drop off in SN Ia rate \sim 6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.Comment: 35 pages, 14 figures, ApJ accepte

    A Population of X-ray Weak Quasars: PHL 1811 Analogs at High Redshift

    Full text link
    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z~2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs are notably X-ray weak by a mean factor of ~13. These sources lack broad absorption lines and have blue UV/optical continua, suggesting they are intrinsically X-ray weak. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our radio-quiet PHL 1811 analogs support a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be < 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties for a sample combining radio-quiet PHL 1811 analogs, PHL 1811, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, radio-quiet PHL 1811 analogs appear to be a subset (~30%) of radio-quiet weak-line quasars. The existence of a subset of quasars in which high-ionization "shielding gas" covers most of the BELR, but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. One of them appears to have jet-dominated X-ray emission, while the nature of the other remains unclear.Comment: ApJ accepted; 25 pages, 11 figures and 8 table

    2-D Magnetohydrodynamic Simulations of Induced Plasma Dynamics in the Near-Core Region of a Galaxy Cluster

    Full text link
    We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ne2{n_e}^2. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy over anisotropic thermal conduction in the presence of subsonic flows, thereby reducing the impact of the magnetic field. Deviations from hydrostatic equilibrium near the cluster core may be associated with transient activity of a central active galactic nucleus and/or remnant dynamical activity in the ICM and warrant further study in three dimensions.Comment: 16 pages, 13 figures, accepted for publication in MNRA

    Follow-up of the GHSG HD16 trial of PET-guided treatment in early-stage favorable Hodgkin lymphoma.

    Get PDF
    The primary analysis of the GHSG HD16 trial indicated a significant loss of tumor control with PET-guided omission of radiotherapy (RT) in patients with early-stage favorable Hodgkin lymphoma (HL). This analysis reports long-term outcomes. Overall, 1150 patients aged 18-75 years with newly diagnosed early-stage favorable HL were randomized between standard combined-modality treatment (CMT) (2x ABVD followed by PET/CT [PET-2] and 20 Gy involved-field RT) and PET-2-guided treatment omitting RT in case of PET-2 negativity (Deauville score [DS] < 3). The study aimed at excluding inferiority of PET-2-guided treatment and assessing the prognostic impact of PET-2 in patients receiving CMT. At a median follow-up of 64 months, PET-2-negative patients had a 5-year progression-free survival (PFS) of 94.2% after CMT (n = 328) and 86.7% after ABVD alone (n = 300; HR = 2.05 [1.20-3.51]; p = 0.0072). 5-year OS was 98.3% and 98.8%, respectively (p = 0.14); 4/12 documented deaths were caused by second primary malignancies and only one by HL. Among patients assigned to CMT, 5-year PFS was better in PET-2-negative (n = 353; 94.0%) than in PET-2-positive patients (n = 340; 90.3%; p = 0.012). The difference was more pronounced when using DS4 as cut-off (DS 1-3: n = 571; 94.0% vs. DS ≥ 4: n = 122; 83.6%; p < 0.0001). Taken together, CMT should be considered standard treatment for early-stage favorable HL irrespective of the PET-2-result
    corecore