109 research outputs found

    Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus

    Get PDF
    Current bioavailability models, such as the free ion activity model and biotic ligand model, explicitly consider that metal exposure will be mainly to the dissolved metal in ionic form. With the rise of nanotechnology products and the increasing release of metal-based nanoparticles (NPs) to the environment, such models may increasingly be applied to support risk assessment. It is not immediately clear, however, whether the assumption of metal ion exposure will be relevant for NPs. Using an established approach of oral gluing, a toxicokinetics study was conducted to investigate the routes of silver nanoparticles (AgNPs) and Ag+ ion uptake in the soil-dwelling earthworm Lumbricus rubellus. The results indicated that a significant part of the Ag uptake in the earthworms is through oral/gut uptake for both Ag+ ions and NPs. Thus, sealing the mouth reduced Ag uptake by between 40% and 75%. An X-ray analysis of the internal distribution of Ag in transverse sections confirmed the presence of increased Ag concentrations in exposed earthworm tissues. For the AgNPs but not the Ag+ ions, high concentrations were associated with the gut wall, liver-like chloragogenous tissue, and nephridia, which suggest a pathway for AgNP uptake, detoxification, and excretion via these organs. Overall, the results indicate that Ag in the ionic and NP forms is assimilated and internally distributed in earthworms and that this uptake occurs predominantly via the gut epithelium and less so via the body wall. The importance of oral exposure questions the application of current metal bioavailability models, which implicitly consider that the dominant route of exposure is via the soil solution, for bioavailability assessment and modeling of metal-based NPs

    Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food

    Get PDF
    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment

    Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm.

    Get PDF
    The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm was explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L-1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L-1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg-1, and with most of it being acid-extractable/labile. The biota accumulated 4-59 μg Ag g-1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonated snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g-1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3

    Dosimetry and optimal scan time of 18FSiTATE-PET/CT in patients with neuroendocrine tumours

    Get PDF
    PURPOSE Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). 18FSiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS Eight NET patients received a 18FSiTATE-PET/CT (250 ± 66~MBq) with repeated emission scans (10, 30, 60, 120, 180~min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004~mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120~min images. CONCLUSION 18FSiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180~min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of 18FSiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120~min, followed by 60~min after injection
    corecore