384 research outputs found

    Entanglement dynamics of three-qubit states in noisy channels

    Full text link
    We study entanglement dynamics of the three-qubit system which is initially prepared in pure Greenberger-Horne- Zeilinger (GHZ) or W state and transmitted through one of the Pauli channels σz,σx,σy\sigma_z, \, \sigma_x, \, \sigma_y or the depolarizing channel. With the help of the lower bound for three-qubit concurrence we show that the W state preserves more entanglement than the GHZ state in transmission through the Pauli channel σz\sigma_z. For the Pauli channels σx,σy\sigma_x, \, \sigma_y and the depolarizing channel, however, the entanglement of the GHZ state is more resistant against decoherence than the W-type entanglement. We also briefly discuss how the accuracy of the lower bound approximation depends on the rank of the density matrix under consideration.Comment: 2 figures, 32 reference

    Impact of sequencing depth in ChIP-seq experiments

    Get PDF
    In a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiment, an important consideration in experimental design is the minimum number of sequenced reads required to obtain statistically significant results. We present an extensive evaluation of the impact of sequencing depth on identification of enriched regions for key histone modifications (H3K4me3, H3K36me3, H3K27me3 and H3K9me2/me3) using deep-sequenced datasets in human and fly. We propose to define sufficient sequencing depth as the number of reads at which detected enrichment regions increase <1% for an additional million reads. Although the required depth depends on the nature of the mark and the state of the cell in each experiment, we observe that sufficient depth is often reached at <20 million reads for fly. For human, there are no clear saturation points for the examined datasets, but our analysis suggests 40–50 million reads as a practical minimum for most marks. We also devise a mathematical model to estimate the sufficient depth and total genomic coverage of a mark. Lastly, we find that the five algorithms tested do not agree well for broad enrichment profiles, especially at lower depths. Our findings suggest that sufficient sequencing depth and an appropriate peak-calling algorithm are essential for ensuring robustness of conclusions derived from ChIP-seq data

    Superconducting Transition and Phase Diagram of Single Crystal MgB2

    Get PDF
    The superconducting phase diagram of MgB2 was determined from magnetization, magneto-transport and the first single-crystal specific heat measurements. A zero-temperature in-plane coherence length of 8 nm is determined. The superconducting anisotropy increases from a value around 2 near Tc to above 4.5 at 22 K. For H||c a pronounced peak effect in the critical current occurs at the upper critical field. Evidence for a surface superconducting state is presented for H||c which might account for the wide spread in reported values of the anisotropy

    V-I characteristics in the vicinity of order-disorder transition in vortex matter

    Full text link
    The shape of the V-I characteristics leading to a peak in the differential resistance r_d=dV/dI in the vicinity of the order-disorder transition in NbSe2 is investigated. r_d is large when measured by dc current. However, for a small Iac on a dc bias r_d decreases rapidly with frequency, even at a few Hz, and displays a large out-of-phase signal. In contrast, the ac response increases with frequency in the absence of dc bias. These surprisingly opposite phenomena and the peak in r_d are shown to result from a dynamic coexistence of two vortex matter phases rather than from the commonly assumed plastic depinning.Comment: 12 pages 4 figures. Accepted for publication in PRB rapi

    Rescaling multipartite entanglement measures for mixed states

    Full text link
    A relevant problem regarding entanglement measures is the following: Given an arbitrary mixed state, how does a measure for multipartite entanglement change if general local operations are applied to the state? This question is nontrivial as the normalization of the states has to be taken into account. Here we answer it for pure-state entanglement measures which are invariant under determinant 1 local operations and homogeneous in the state coefficients, and their convex-roof extension which quantifies mixed-state entanglement. Our analysis allows to enlarge the set of mixed states for which these important measures can be calculated exactly. In particular, our results hint at a distinguished role of entanglement measures which have homogeneous degree 2 in the state coefficients.Comment: Published version plus one important reference (Ref. [39]

    Teleportation of the one-qubit state with environment-disturbed recovery operations

    Full text link
    We study standard protocol P0\mathcal{P}_0 for teleporting the one-qubit state with both the transmission process of the two qubits constitute the quantum channel and the recovery operations performed by Bob disturbed by the decohering environment. The results revealed that Bob's imperfect operations do not eliminate the possibility of nonclassical teleportation fidelity provided he shares an ideal channel state with Alice, while the transmission process is constrained by a critical time t0,ct_{0,c} longer than which will result in failure of P0\mathcal{P}_0 if the two qubits are corrupted by the decohering environment. Moreover, we found that under the condition of the same decoherence rate γ\gamma, the teleportation protocol is significantly more fragile when it is executed under the influence of the noisy environment than those under the influence of the dissipative and dephasing environments.Comment: 8 pages, 4 figure

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore