Abstract

We study entanglement dynamics of the three-qubit system which is initially prepared in pure Greenberger-Horne- Zeilinger (GHZ) or W state and transmitted through one of the Pauli channels σz, σx, σy\sigma_z, \, \sigma_x, \, \sigma_y or the depolarizing channel. With the help of the lower bound for three-qubit concurrence we show that the W state preserves more entanglement than the GHZ state in transmission through the Pauli channel σz\sigma_z. For the Pauli channels σx, σy\sigma_x, \, \sigma_y and the depolarizing channel, however, the entanglement of the GHZ state is more resistant against decoherence than the W-type entanglement. We also briefly discuss how the accuracy of the lower bound approximation depends on the rank of the density matrix under consideration.Comment: 2 figures, 32 reference

    Similar works