604 research outputs found

    Non-relativistic limit of Randall-Sundrum model: solutions, applications and constraints

    Full text link
    In the Randall-Sundrum model with one brane, we found the approximate and exact solutions for gravitational potentials and accelerations of test bodies in these potentials for different geometrical configurations. We applied these formulas for calculation of the gravitational interaction between two spheres and found the approximate and exact expressions for the relative force corrections to the Newton's gravitational force. We demonstrated that the difference between relative force corrections for the approximate and exact cases increases with the parameter ll (for the fixed distance rr between centers of the spheres). On the other hand, this difference increases with decreasing of the distance between the centers of the spheres (for the fixed curvature scale parameter ll). We got the upper limit for the curvature scale parameter lâ‰Č10 Όl\lesssim 10\, \mum. For these values of ll, the difference between the approximate and exact solutions is negligible.Comment: LaTex 11 pages, 3 figure

    Evaluation of Exposure Assessment Tools under REACH: Part II-Higher Tier Tools.

    Get PDF
    StoffenmanagerÂźv4.5 and Advanced REACH Tool (ART) v1.5, two higher tier exposure assessment tools for use under REACH, were evaluated by determining accuracy and robustness. A total of 282 exposure measurements from 51 exposure situations (ESs) were collected and categorized by exposure category. In this study, only the results of liquids with vapor pressure (VP) > 10 Pa category having a sufficient number of exposure measurements (n = 251 with 42 ESs) were utilized. In addition, the results were presented by handling/activity description and input parameters for the same exposure category. It should be noted that the performance results of Stoffenmanager and ART in this study cannot be directly compared for some ESs because ART allows a combination of up to four subtasks (and nonexposed periods) to be included, whereas the database for Stoffenmanager, separately developed under the permission of the legal owner of Stoffenmanager, permits the use of only one task to predict exposure estimates. Thus, it would be most appropriate to compare full-shift measurements against ART predictions (full shift including nonexposed periods) and task-based measurements against task-based Stoffenmanager predictions. For liquids with VP > 10 Pa category, StoffenmanagerÂźv4.5 appeared to be reasonably accurate and robust when predicting exposures [percentage of measurements exceeding the tool's 90th percentile estimate (%M > T) was 15%]. Areas that could potentially be improved include ESs involving the task of handling of liquids on large surfaces or large work pieces, allocation of high and medium VP inputs, and absence of local exhaust ventilation input. Although the ART's median predictions appeared to be reasonably accurate for liquids with VP > 10 Pa, the %M > T for the 90th percentile estimates was 41%, indicating that variance in exposure levels is underestimated by ART. The %M > T using the estimates of the upper value of 90% confidence interval (CI) of the 90th percentile estimate (UCI90) was considerably reduced to 18% for liquids with VP > 10 Pa. On the basis of this observation, users might be to consider using the upper limit value of 90% CI of the 90th percentile estimate for predicting reasonable worst case situations. Nevertheless, for some activities and input parameters, ART still shows areas to be improved. Hence, it is suggested that ART developers review the assumptions in relation to exposure variability within the tool, toward improving the tool performance in estimating percentile exposure levels. In addition, for both tools, only some handling/activity descriptions and input parameters were considered. Thus, further validation studies are still necessary

    Evaluation of Exposure Assessment Tools under REACH: Part I-Tier 1 Tools.

    Get PDF
    Tier 1 occupational exposure assessment tools recommended for use under the Registration, Evaluation, Authorization, and restriction of CHemicals (REACH) were evaluated using newly collected measurement data. Evaluated tools included the ECETOC TRAv2 and TRAv3, MEASEv1.02.01, and EMKG-EXPO-TOOL. Fifty-three exposure situations (ESs) based on tasks/chemicals were developed from National Institute for Occupational Safety and Health field surveys. During the field surveys, high quality contextual information required for evaluating the tools was also collected. For each ES, applicable tools were then used to generate exposure estimates using a consensus approach. Among 53 ESs, only those related to an exposure category of liquids with vapor pressure (VP) > 10 Pa had sufficient numbers of exposure measurements (42 ESs with n = 251 for TRAv2 and TRAv3 and 40 ESs with n = 243 for EMKG-EXPO-TOOL) to be considered in detail. The results for other exposure categories (aqueous solutions, liquids with VP ≀ 10 Pa, metal processing, powders, and solid objects) had insufficient measurement to allow detailed analyses (results listed in the Supplementary File). Overall, EMKG-EXPO-TOOL generated more conservative results than TRAv2 and TRAv3 for liquids with high VP. This finding is at least partly due to the fact that the EMKG-EXPO-TOOL only considers pure substances and not mixtures of chemical agents. For 34 out of 40 ESs available for chemicals with VP > 10 Pa, the liquid was a mixture rather than a pure substance. TRAv3 was less conservative than TRAv2, probably due to additional refinement of some input parameters. The percentages of exposure measurement results exceeding the corresponding tool estimates for liquids with VP > 10 Pa by process category and by input parameters were always higher for TRAv3 compared to those for TRAv2. Although the conclusions of this study are limited to liquids with VP > 10 Pa and few process categories, this study utilized the most transparent contextual information compared to previous studies, reducing uncertainty from assumptions for unknown input parameters. A further validation is recommended by collecting sufficient exposure data covering other exposure categories and all process categories under REACH

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure

    Synthesis, structure and magnetic properties ofÎČ-MnO2nanorods

    Get PDF
    We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline ÎČ-MnO2nanorods of 50–100 nm diameter and several ”m length. Thorough structural characterization shows that the basic ÎČ-MnO2material is covered by a thin surface layer (∌2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the ÎČ-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated ÎČ-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases

    Effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite

    Get PDF
    Nb is a very important micro-alloying element in low-carbon steels, for grain size refinement and precipitation strengthening, and even a low content of Nb can result in a significant effect on phase transformation kinetics from austenite to ferrite. Solute Nb atoms and Nb precipitates may have different effects on transformation behaviors, and these effects have not yet been fully characterized. This paper examines in detail the effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite. The mechanisms of the effects have been analyzed using various microscopy techniques. Many solute Nb atoms were found to be segregated at the austenite/ferrite interface and apply a solute drag effect. It has been found that solute Nb atoms have a retardation effect on ferrite nucleation rate and ferrite grain growth rate. The particle pinning effect caused by Nb precipitates is much weaker than the solute drag effect

    Measurement of beauty production in deep inelastic scattering at HERA

    Get PDF
    The beauty production cross section for deep inelastic scattering events with at least one hard jet in the Breit frame together with a muon has been measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA using integrated luminosity of 72 pb^-1. The total visible cross section is sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The next-to-leading order QCD prediction lies about 2.5 standard deviations below the data. The differential cross sections are in general consistent with the NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon transverse momentum, and high values of jet transverse energy and muon pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure

    Photoproduction of D∗±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D∗±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb−1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {Ξn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The D∗D^* meson is centrally produced with pseudorapidity {∣η∣1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive D∗D^* production is 8.85±0.93(stat.)−0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table

    Measurement of the open-charm contribution to the diffractive proton structure function

    Get PDF
    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.Comment: 35 pages, 11 figures, 6 table

    Modelling the probability of meeting IUCN Red List criteria to support reassessments

    Get PDF
    Comparative extinction risk analysis—which predicts species extinction risk from correlation with traits or geographical characteristics—has gained research attention as a promising tool to support extinction risk assessment in the IUCN Red List of Threatened Species. However, its uptake has been very limited so far, possibly because existing models only predict a species' Red List category, without indicating which Red List criteria may be triggered. This prevents such approaches to be integrated into Red List assessments. We overcome this implementation gap by developing models that predict the probability of species meeting individual Red List criteria. Using data on the world's birds, we evaluated the predictive performance of our criterion-specific models and compared it with the typical criterion-blind modelling approach. We compiled data on biological traits (e.g. range size, clutch size) and external drivers (e.g. change in canopy cover) often associated with extinction risk. For each specific criterion, we modelled the relationship between extinction risk predictors and species' Red List category under that criterion using ordinal regression models. We found criterion-specific models were better at identifying threatened species compared to a criterion-blind model (higher sensitivity), but less good at identifying not threatened species (lower specificity). As expected, different covariates were important for predicting extinction risk under different criteria. Change in annual temperature was important for criteria related to population trends, while high forest dependency was important for criteria related to restricted area of occupancy or small population size. Our criteria-specific method can support Red List assessors by producing outputs that identify species likely to meet specific criteria, and which are the most important predictors. These species can then be prioritised for re-evaluation. We expect this new approach to increase the uptake of extinction risk models in Red List assessments, bridging a long-standing research-implementation gap
    • 

    corecore