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The Stoffenmanager®v4.5 and Advanced REACH Tool (ART), two higher tier exposure assessment tools for use 
under REACH were evaluated,. A total of 282 exposure measurements from 51 exposure situations (ESs) were 
utilized and results were presented by exposure category, handling/activity description, and input parameters. 
For all exposure categories except for powders and solid objects, the Stoffenmanager appeared to be accurate 
(relative bias ranging from -56 to 332%) and robust to predict exposures (percent of measurements exceeding the 
tool’s 90th percentile estimate [%M>T] ranging from 0 to 15%). Yet, areas that this tool need to be improved were 
present including the handling of liquids on large surfaces or large work pieces task, the high and medium 
allocation of vapour pressure input, and the absence of local exhaust ventilation input.  For handling solid objects, 
the Stoffenmanager assumed minimal emissions leading to zero exposure estimates, whereas low exposure levels 
were observed from field surveys; it is therefore recommended that the tool developer review an algorithm for 
this category. Although the ART’s predictions appeared to be accurate for all exposure categories except powders, 
the %M>Ts for the 90th percentile estimates were greater than 25%, indicating that the tool considerably 
underestimates exposures. Hence, it is strongly suggested that ART developers review the tool’s calibration and 
assigned scores representing exposure variability towards improving the tool performance. Except for liquids with 
VP > 10 Pa, the findings of other exposure categories were based ona limited number of exposure situations and 
measurements with low ranges of concentrations. In addition, for both tools, not all handling/activity descriptions 
and input parameters were considered. Thus, further validation studies are still necessary.  
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Tier 1 exposure assessment tools described in the European Chemicals Agency (ECHA) R14 guidance (2016) are 
designed to be simple and easy to use and to be conservative by overestimating a potential exposure for a defined 
exposure scenario. If exposures estimated from the first tier tools exceed the DNEL of a substance, it is 
recommended to use higher tier tools which are developed to generate exposure levels with greater accuracy and 
less uncertainty. Higher tier tools include Stoffenmanager® (hereinafter referred to as Stoffenmanager) and the 
Advanced REACH Tool (ART). The background information of both tools are well described in the ECHA R14 
guidance and previous publications (Fransman et al., 2011; McNally et al., 2014; Marquart et al., 2008; Schinkel 
et al., 2011; Schinkel et al., 2013; Schinkel et al., 2014; Tielemans et al., 2008; Tielemans et al., 2011). In addition, 
a conceptual evaluation for the Stoffenmanager has been performed by Hesse et al. (2015).  

Currently,  few studies are available regarding the external validity of the tools (Annex A of Part I paper by Lee et 
al., 2017). Schinkel et al. (2010) validated the Stoffenmanager and suggested a refinement of the tool. As results, 
they included the datasets used for the validation study and developed four different equations for the following 
categories: (1) handling powders and granules; (2) handling which results in comminution, (3) handling low-
volatile chemicals, and (4) handling volatile chemicals. Koppisch et al. (2012) validated equations of the 
Stoffenmanager regarding handling of powders/granules (n=390) and machining (n=1133) for exposures to 
inhalable dust. The authors used data from the MEGA (“Measurement data relating to workplace exposure to 
hazardous substances”; in German, “Messdaten zur Exposition gegenüber Gefahrstoffen am Arbeitsplatz”) 
database, collected between 2000 and 2009, and reported 11% and 7% of the exposure data to be above the 
estimated 90th percentile of the Stoffenmanager for  handling of powders and machining, respectively.  Vink et al. 
(2010) evaluated the Stoffenmanager v4 with exposure data collected from paint spraying tasks and reported less 
conservative results compared to those for estimates by the ECETOC TRAv2. In a more recent study, Landberg et 
al. compared the 90th percentile estimates of Stoffenmanager v5.1 with the median values of exposure 
measurements for 11 distinct exposure scenarios across the wood, printing, metal foundry and spray painting 
industries. The authors reported the tool estimates to overestimate exposure for solids (n=11) but to 
underestimate exposure for liquids (n=26) by an approximate 27% .  McDonnell et al. (2011) compared the 
exposure data (n=190) from 16 exposure scenarios collected in pharmaceutical companies with the ART 
predictions estimated from a refined version for the inhalable dust algorithm and reported the tool to 
underestimate the geometric mean exposure levels by approximately one-third. Recently, Spinazze et al. (2017) 
evaluated the accuracy and robustness of the Stoffenmanager v.6 and ART v1.5 using pre-existing exposure data 
of organic solvents and pesticides. As results, they reported that overall the ART was the most accurate for both 
organic solvents and pesticides but underestimated the exposures to pesticides. In terms of robustness, they 
concluded that the Stoffenmanager was the most robust tool showing less percent of measurements exceeding 
the model’s 90th percentile estimates.  

The present study has been conducted as a follow up on the The Evaluation of Tier 1 Exposure Assessment Models 
used under REACH (ETEAM) project  to compare and evaluate the different REACH exposure tools using 
measurement data collected specifically for the purpose (Tischer et al., In Preparation). The results of the 
validations for the tier one tools are reported in Part I (Lee et al 2017) whereas this paper describes the results of 
the validation of the higher tier tools (Stoffenmanager v4.5 and ART) using the same exposure data.  

METHODS 

Field surveys and development of exposure situation (ES) 
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The field surveys and development of ES scenarios is described in detailed in Part I (Lee et al., 2017). Five exposure 
categories were defined as follows: (1) Aqueous solutions, (2) Liquids with a vapour pressure (VP) ≤ 10 Pa at room 
temperature, (3) Liquids with a VP > 10 Pa at room temperature, (4) Powders, and (5) Solid objects. An exposure 
category of metal processing was not included in this part because Stoffenmanager and ART have not been 
calibrated for hot metal processing tasks (ES9-Casting task and ES15-Smelting task). As a result, a total of 282 
personal exposure measurements from 51 ESs were included (Table 1). Detailed information about tasks and 
number of samples for each task are listed in Supplement Table S1.  

Although it is possible to consider multiple tasks in Stoffenmanager, this does not apply for the free web-version 
(v4.5). In this study, therefore, we combined several sub-tasks into one task and applied the lowest control 
method, same as Tier 1 tools. On the other hand, the ART is capable of accounting for a maximum of four sub-
tasks.   

Translation of contextual information into the tools’ input parameters 

The translation of contextual information into the tool input parameters was done  concurrently  to the translation 
for Tier 1 tools by the same assessors (EL, JL, NS, BG, JK, and MT) from six different organizations (Lee et al., 
2017)For Stoffenmanager, assessors were asked to use the Microsoft Access database, developed as part of the 
ETEAM project. For ART, due to the complexity of the tool mechanism, each assessor was asked to create an 
account in ART (Fehler! Hyperlink-Referenz ungültig.) and to code the input parameters directly into the web-
based tool. The ART allows the inputs and outputs to be exported into a Microsoft Excel report and the assessors 
were asked to send this report together with a summary of the range of ART-generated different percentiles of 
the predicted exposure and associated confidence intervals to the IOM and NIOSH. All the collected input 
parameters from the assessors were discussed at an in-present meeting in July, 2015 to make consensus of final 
inputs.  

Generation of the tool estimates 

With the agreed input parameters for each tool, the Stoffenmanager semi-quantitative scores were calculated 
using the published algorithms incorporated in the Access database. The score from the tool was then converted 
to a quantitative exposure estimation using the equations by Schinkel et al. (2010). For Stoffenmanager, the 50th, 
75th, and 90th percentile estimates were reported. For ART, estimates were generated using the web-based tool 
and reported full-shift exposures of 50th, 75th, and 90th percentiles along with a 90% confidence interval of each 
percentile estimate.  

Data analyses 

Stoffenmanager is known as a task-based tool. Thus, as descripted in Part I study, it is necessary to modify the 
collected exposure measurements accordingly. We converted the exposure measurements with sampling times 
to task-based measurements and performed comparison with the tool’s estimates. Stoffenmanager generates 
exposure estimates as a distribution form and a user can select specific percentiles. For example, if a user selects 
90th percentile estimation, it means that the 90% of the exposure measurements in the exposure distribution with 
actual measurements were below than the selected 90th percentile estimation.  

ART also provides exposure estimates in the form of a distribution but either for full-shift (recommended for 
REACH evaluation) or long-term exposures. A user can then select percentiles of the exposure distribution (i.e., 
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50th, 75th, 90th, 95th or 99th) and a confidence interval (CI) for each percentile (i.e., 80%, 90%, 95% or 99%) to be 
estimated. The former expresses exposure variability while the latter indicates the uncertainty around the 
percentile estimate. For the ART evaluation, all exposure measurements were converted into the full-shift 
exposures (i.e., 8-hour shift).  

For both tools, the 90th percentile estimate was selected for the purpose of the evaluation, since it represents a 
“reasonable worst case” exposure situation and is recommended for risk characterization according to the ECHA 
R14 guidance (2016). In addition, 50th and 75th percentile estimates were obtained to compare the distribution of 
tools’ estimates.  

One way to determine whether the tool has been calibrated correctly is to compare accuracies of different 
percentiles (e.g., 50th, 75th, and 90th percentile) by calculating each percentile estimate from the exposure 
measurement distribution of each exposure situation. However, such a   comparison could not be performed 
within the present study because of insufficient exposure measurements per exposure situation. Instead, we used 
50th percentile estimates of both tools to calculate bias and precision using the following equations (Hornung, 
1991):  
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Relative bias was then calculated as (Schinkel et al., 2010): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏 =  �𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� ∗ 100% 

where iŷ =predicted exposure level for the ith set of exposure factors in the validation set (log scale), iy = 

measured exposure for the ith set of exposure factors (log scale), and 0n = number of measurements in the 

validation set. The bias indicates a distance of the tool estimate from the true value, whereas the precision 
estimates variability. A positive bias implies overestimation by a tool compared to an exposure measurement; a 
negative bias implies underestimation. The smaller value of the relative bias indicates the more accurate results 
for the exposure estimation. Pearson correlation coefficient (rp) was calculated to determine the relationship 
between exposure measurements and tool estimates (both log-transformed). All data analyses were performed 
using the Statistical Analysis Software (SAS) v. 9.4.  

The results were presented by exposure category, handling/activity description, and tool input parameters. In 
situations where multiple activity descriptions were available for the ART, the activity description showing the 
longest exposure time was selected to represent the activity for a task. When two different activities had the same 
exposure time, these activities were combined, such as HC&A = Handling of contaminated objects or paste & 
Activities with relatively undisturbed surfaces (no aerosol formation).  

Among 51 ESs, 38 ESs (~ 75%) included multiple sub-tasks with different control methods for the ART, but only 
the lowest control method was considered for the Stoffenmanager.  For example, ES 19 (Batch-making task) had 
four sub-tasks with control methods of no presence of local exhaust ventilation and a fully enclosed system. For 
this ES, we considered the lowest control method (i.e., LEV absence) for the Stoffenmanager, whilst all control 
methods for each sub-task were applied for the ART. For these ESs, a direct comparison of accuracy between these 
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tools would not be possible. Hence, the remaining 13 ESs (n=53) having only one task were pooled out from the 
full dataset to compare both tools in terms of accuracy.  

 

RESULTS 

Description of workplace measurement data 

Tables 1 and 2 are summary of personal exposure measurements and tools’ 90th percentile estimates presented 
by exposure category. Among 282 exposure measurements, the majority of measurements (~89%) falls in 
exposures to liquids with VP > 10 Pa. This exposure category includes a wide range of exposure concentrations 
from 0.01 mg/m3 to 1455.4 mg/m3 (full-shift measurements) and from 0.07 mg/m3 to 6653.3 mg/m3 (task-based 
measurements) covering workplaces from small laboratories to heavy industries. Compared to this category, other 
exposure categories showed lower ranges of exposure measurements. The number of ESs for liquids with VP > 10 
Pa was 42, whereas the number of ESs for other exposure categories was ≤ 3.  

Table 1. Summary of the personal exposure measurements (task-based) and the Stoffenmanager 90th percentile 
estimates (by exposure category) 

Exposure 
Category 

ES 
No 

N Exposure measurements  Stoffenmanager 90th percentile estimates 
AM 
(mg/m3) 

GM 
(mg/m3) 

GSD Range 
(mg/m3) 

AM 
(mg/m3) 

GM 
(mg/m3) 

GSD Range 
(mg/m3) 

Aqueous solutions 2 4 0.92 0.73 2.31 0.24-1.82 31.87 28.95 1.67 18.5-45.2 
Liquids with VP ≤ 
10 Pa 

2 5 0.07 0.05 2.83 0.02-0.16 0.35 0.31 1.83 0.16-0.48 

Liquids with VP > 
10 Pa 

42 251 214.4 24.48 9.84 0.07-6653.3 459.48 284.92 2.72 30.5-1627.5 

Powders 2 11 0.44 0.24 3.73 0.03-1.44 47.28 47.21 1.06 45.3-50.8 
Solid Objects 3 11 0.09 0.03 5.64 0.002-0.33 0* * * 0* 
Overall 51 282 190.9 13.40 16.78 0.002-

6653.3 
411.27 182.76 5.62 0.16-1627.5 

Abbreviations: ES No=number of exposure situations (ESs) developed by NIOSH; N=number of personal exposure measurements; AM = arithmetic mean 
exposure; GM=geometric mean exposure; GSD=geometric standard deviation. * all estimates for this category are zero.   
 
Table 2. Summary of the personal exposure measurements (full-shift) and the ART 90th percentile estimates (by 
exposure category) 

Exposure Category ES 
No 

N Exposure measurements  ART 90th percentile estimates 
AM 
(mg/m3) 

GM 
(mg/m3) 

GSD Range 
(mg/m3) 

AM (mg/m3) GM 
(mg/m3) 

GSD Range 
(mg/m3) 

Aqueous solutions 2 4 0.15 0.07 5.26 0.01-0.37 
 

0.06 0.0412 2.78 0.017-0.1 

Liquids with VP ≤ 
10 Pa 

2 5 0.005 0.003 3.16 0.001-0.01 0.003 0.002 3.15 0.001-0.005 

Liquids with VP > 
10 Pa 

42 251 60.9 7.88 10.30 0.01-1455.4 66.57 11.68 16.03 0.013-310 

Powders 2 11 0.31 0.17 3.74 0.02-0.99 28* * * 28* 
Solid Objects 3 11 0.03 0.02 4.24 0.001-0.083 0.335 0.040 8.95 0.011-1.2 
Overall 51 282 54.2 4.32 17.49 0.001-

1455.4 
60.36 7.67 23.42 0.001-310 

Abbreviations: ES No=number of exposure situations (ESs) developed by NIOSH; n=number of personal exposure measurements; AM = arithmetic mean 
exposure; GM=geometric mean exposure; GSD=geometric standard deviation. * The same estimate value was obtained for all 2 ESs. 
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Comparison of exposure measurements with tool estimates 

1) By exposure Category 

Both AMs and GMs of the 90th percentile Stoffenmanager predictions were higher than those of the 
measurements for all exposure categories except for the solid object category (Table 1). For this category the tiool 
predicted zero exposures for all 3 ESs  included (ES 8 – Wire extraction, ES 10 – Packing and shipping, and ES 12 – 
Bar feeding). Correlations between the log-transformed Stoffenmanager estimates and log-transformed exposure 
measurements appeared to be high for exposures to liquids with VP ≤ 10 Pa, moderate for exposures to liquids 
with VP > 10 Pa, negative for aqueous solutions, and weak for the powder handling category.  Note that Table 3 
includes no results for the solid objects category because of zero exposure predictions for all ESs. Positive biases 
for the categories of aqueous solutions, liquids with VP > 10Pa, and powders indicate that on average the tool 
overestimated exposures when comparing with the measured data. In contrast,  
aA negative bias for liquids with VP ≤ 10 Pa indicates underestimation of exposures. Among four categories, the 
tool showed the highest accuracy for exposures to liquids with VP > 10 Pa (relative bias =29%) and the lowest for 
exposures to powders (relative bias = 2003%). The percentage of measurements exceeding the tool’s 90th 
percentile estimates were 15% for exposures to liquids with VP > 10 Pa category (Table 3 and Figure 1), whereas 
the other categories showed no measurements exceeding the tool estimates.  
 
For the ART, all AMs and GMs for the 90th percentile predictions were higher than those for the measured full-
shift exposure data regarding liquids with VP > 10 Pa, powders, and solid objects, whereas opposite results were 
observed for the other categories (Table 2). The correlations were either high or moderate for all categories except 
powders; The correlation for powders could not be calculated because the exposure estimate was the same for 
the two ESs included. The results of bias and relative bias indicated that overall the tool underestimated exposures 
for all categories except powders. The accuracy for exposures to liquids with VP > 10 Pa was poorer than for solid 
objects but better compared to the one for the other categories. The value for precision was highest for exposures 
to liquids with VP > 10 Pa indicating less precise estimates of the tool in this category compared to the others. 
When individual measurements were compared with the tool estimates, all exposure categories except for 
powders showed %M>Ts greater than 25% for all percentile estimates (i.e., 50th, 75th, and 90th percentiles).   
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Figure 1. Measured data vs. tools’ 90th percentile estimates for exposures to liquids with VP > 10 Pa (Left: 
Stoffenmanager; Right: ART)  



Page 8 of 15 
 

Table 3. Comparison of the exposure measurements with the corresponding tools’ exposure estimates (by 
exposure category) 

Tool Exposure Category ES 
No 

n rp Bias Precision Relative 
bias (%) 

%M>T 
>50th >75th >90th 

Stoffenmanager Aqueous Solutions 2 4 -0.8 1.5 1.3 332 0 0 0 
Liquids with VP ≤ 10 Pa 2 5 0.9 * -0.8 0.6 -56 100 20 0 
Liquids with VP > 10Pa 42 251 0.4* 0.3 2.1 29 46 22 15 
Powders 2 11 0.1 3.0 1.3 2003 0 0 0 
Solid Objects 3 11 ** ** ** ** NC NC NC 

ART  
 

Aqueous Solutions 2 4 1.05* -1.8 0.7 -84 100 100 75 
Liquids with VP ≤ 10 Pa 2 5 0.9* -1.7 0.5 -82 100 100 80 
Liquids with VP > 10Pa 42 251 0.6* -0.7 2.3 -53 65 53 41 
Powders 2 11 *** 3.8 1.3 4172 0 0 0 
Solid Objects 3 11 0.5 -0.4 1.9 -33 64 45 27 

Abbreviation: ES No= number of exposure situations (ESs) for which data were available; n=number of exposure measurements; rp = Pearson correlation 
coefficient (log-transformed data); %M>T = Percentage of exposure measurements exceeding the tool estimates; NC = Not calculated because the tool 
estimates were zero.  *p-value < 0. 05; **Stoffenmanager score for handling solid objects was zero and therefore no log-transformation was possible;*** 
the correlation cannot be calculated because of the same exposure estimate for two ESs.  
 

2) By handling description 
Table 4 shows a summary of the performance of higher tier tools by handling/activity description for exposures 
to liquids with VP > 10 Pa where a number of exposure measurements is greater than 10. Stoffenmanager overall 
underestimated exposures for the LS (Handling of liquids on large surfaces or large work pieces) task along with a 
high %M>T (83%) for the 90th percentile estimates. For the other tasks, the positive biases and the comparison of 
individual measurements with the 90th percentile estimates (ranging from 0 to 15%M>T) suggest that the tool 
overestimates exposures. The correlation was high for the LPLS (Handling of liquids using low pressure, low speed, 
or on medium sized surfaces) and either negative or low for the other tasks.    

Overall, ART underestimated exposures for all selected tasks except NAF (Activities with relatively undisturbed 
surfaces [no aerosol formation]), and the results of the comparison between individual measurement and the 
tool’s 90th percentile estimates also indicated and underestimation of exposures (all %M>Ts greater than 30%). A 
moderate or high correlation was observed for all tasks except SLP (Spreading of liquid products) and NAF 
(Activities with relatively undisturbed surfaces [no aerosol formation]). The relative bias for NAF was the highest 
among tasks but note that this was based on only one ES.    

Table 4. Summary of the tools’ performance by handling/activity description for exposures to liquids with VP > 
10 Pa (n > 10) 

Tool Handling/Activity  ES No n rp Bias Precision Relative 
Bias (%) 

%M>T 
>50th >75th >90th 

Stoffenmanager LPHS 4 56 0.2 1.4 1.3 319 16 4 0 
LS 7 23 0.2 -3.0 1.4 -95 96 91 83 
SS 4 30 -0.1 0.8 1.3 116 30 10 0 
LPLS 16 124 087* 0.2 2.0 28 52 22 15 

ART  
 

HCO 3 25 0.6* -0.3 1.8 -26 72 52 36 
FL 12 62 0.9* -1.4 1.2 -76 92 85 65 
HC&A 7 22 0.4 -3.4 1.4 -97 100 91 86 
SLP 15 109 -0.03 -0.6 2.4 -47 58 40 31 
NAF 1 15 ** 2.2 0.6 785 0 0 0 

Abbreviation: ES No= number of exposure situations (ESs) for which data were available; n=number of exposure measurements; rp = Pearson correlation 
coefficient (log-transformed data); LPHS-Handling of liquids (using low pressure, but high speed) without creating a mist or spray/haze; LS- Handling of liquids 
on large surfaces or large work pieces; SS- Handling of liquids on small surfaces or incidental handling of liquid; LPLS- Handling of liquids using low pressure, 
low speed, or on medium sized surfaces; HCO-Handling of contaminated objects or paste, FL-Falling liquids; HC&A-Combined two activities, Handling of 
contaminated objects or paste & Activities with relatively undisturbed surfaces (no aerosol formation); SLP-Spreading of liquid products; NAF-Activities with 
relatively undisturbed surfaces (no aerosol formation). *p-value < 0. 05; ** Not calculated because of one ART estimation 
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3) By input parameters 

The impact of input parameters for predicting exposure estimations is summarized in Table 5. Only the results for 
liquids with VP > 10 Pa are reported. An impact of the LEV input was not calculated for the ART because of the 
presence of multiple allocations. That is, the majority of ESs (38 out of 51 ESs) has multiple control strategies per 
ES and could not be simply allocated to either LEV presence or absence.  

The %M>T for the Stoffenmanager was zero for the allocation of low VP, while the %M>Ts for the high and medium 
VP allocation were greater than 15%. The tool’s performance was the least accurate for the low VP allocation and 
the most accurate for the medium VP allocation. Negative correlations were observed for the allocation of 
medium and low VP. For the LEV input parameter, the tool’s accuracy was better when LEV was absent compared 
to LEV was present, but the observed 18 %M>T in the former allocation indicates that the tool is likely to 
underestimate exposure levels. None of exposure measurements exceeded the tool’s 90th percentile estimates 
when an LEV was present. The ART’s performance for the high VP allocation was the best among the choices of 
VP input parameter in terms of accuracy. However, the results of negative biases and %M>T greater than 20% for 
all percentile estimates demonstrated that the tool underestimated exposure levels.  

Table 5. Summary of the tools’ performance by input parameter for exposures to liquids with VP>10 Pa  
Tool Input parameter ES 

No 
n rp Bias Precision Relative 

Bias (%) 
%M>T 

>50th >75th >90th 
Stoffenmanager  Vapour 

Pressure(1) 
High 6 37 0.6* -0.5 1.8 -37 62 38 19 
Medium 31 190 -0.1 0.1 2.0 13 47 20 16 
Low 5 24 -0.4* 2.4 1.8 1046 13 8 0 

LEV Yes 7 50 0.7* 1.7 1.8 431 24 4 0 
No 35 201 0.2* -0.1 2.0 -9 51 26 18 

ART  
 

Vapour 
Pressure(1) 

High 6 37 0.5* -0.05 1.6 -5 57 35 22 
Medium 31 190 0.1 -0.7 2.4 -51 62 51 39 
Low 5 24 0.9* -2.1 0.9 -87 100 96 88 

Abbreviation: ES No= number of exposure situations (ESs) for which data were available; n=number of exposure measurements; rp = Pearson correlation 
coefficient (log-transformed data); (1)Low vapour pressure: < 500Pa at room temperature; Medium vapour pressure: 500< VP<10000 Pa; High 
vapour pressure: VP> 10000 Pa. *Impact of LEV input parameter was not calculated due to multiple control methods per ES for the majority 
of ESs 
 

4) ESs having only one task 
As shown in Table 6only 13 ESs (2 ESs each from the aqueous solutions and liquids with VP ≤ 10 Pa and 9 ESs from 
the liquids with VP > 10 Pa) of 51 ESs available included a single task,. Because this sib-set of data is rather limited,  
this section is presented to compare the performance of the Stoffenmanager and ART, and  not to draw any 
conclusion for each tool’s performance. Hence, no results of %M/T are reported.  

For exposure of aqueous solutions and liquids with VP ≤ 10 Pa, results for both tools were comparable to the ones 
of the main analysis (Table 3) because the same number of ESs and exposure measurements were considered. For 
aqueous solutions, Stoffenmanager showed noticeably higher relative bias than ART, whereas for liquids with VP 
≤ 10 Pa, an opposite result was observed. For liquids with VP > 10 Pa, both tools showed relative bias < 20%.  
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Table 6. Comparison of the exposure measurements with the corresponding tools’ exposure estimates for ESs 
having only one task (by exposure category) 

Tool Exposure Category ES No n rp Bias Precision Relative 
Bias (%) 

Stoffenmanager  Aqueous Solutions 2 4 -0.8 1.5 1.3 332 
Liquids with VP ≤ 10 
Pa 

2 5 0.9* -0.8 0.6 -56 

Liquids with VP > 
10Pa 

9 44 0.5* 0.05 1.3 5 

ART  
 

Aqueous Solutions 2 4 1.0* -1.8 0.7 -84 
Liquids with VP ≤ 10 
Pa 

2 5 0.9* -1.7 0.5 -82 

Liquids with VP > 
10Pa 

9 44 0.3* 0.15 2.2 16 

Abbreviation: ES No= number of exposure situations (ESs) for which data were available; n=number of exposure measurements; rp = Pearson correlation 
coefficient (log-transformed data); %M>T = Percentage of exposure measurements exceeding the tool estimates. *p-value < 0. 05 
 
 
DISCUSSION 

Description of workplace measurement data 

As addressed in Part I (Lee et al., 2017), because most exposure measurements and ESs were available for 
exposures to liquids with VP > 10 Pa, the imbalanced data for the other exposure categories (n = from 4 to 11 with 
2 or 3 ESs) might generate inconclusive results. This might be the case even for exposures to liquids with VP > 10 
Pa when performance was determined based on handling or activity descriptions. When the exposure situations 
were stratified by handling/activity descriptions, only four handling tasks (LPHS, LS, SS, and LPLS) for the 
Stoffenmanager and five activity tasks (HCO, FL, HC&A, SLP, and NAF) for the ART included more than 10 exposure 
measurements for use in the comparisons. . Therefore, it is necessary to collect additional exposure 
measurements for those exposure categories and handling/activity descriptions having limited sample sizes. In 
addition, i the measured exposure levels for all categories except liquids with VP > 10 Pa were in general low which 
could be a limitation of the study. Nevertheless, the current study forms one of the most valuable evaluations for 
the tools because almost all contextual information required for the tool’s input parameters was collected during 
the field surveys. Hence, the findings in this study may be close to the real circumstances in terms of the tool’s 
performance, especially for exposures to liquids with VP > 10 Pa for which sample sizes were large.  

Comparison of exposure measurements with tool estimates 

Stoffenmanager: A summary of relative bias and %M>T from previous studies and the current study is presented 
in Table 7. For exposure categories of aqueous solutions and powders, 0%M>T for the tool’s percentile estimates 
(50th, 75th, and 90th percentiles) and positive biases indicated that the tool overestimated exposures levels. The 
results of previous studies by Koppisch et al. (2012) and van Tongeren et al. (2017) for powders suggest the tool 
to overestimate exposure, which is in concordance with the findings of the present study. Schinkel et al. (2010) 
reported 29%M>T for the same category, indicating underestimation of the tool but this result was based on a 
previous calibration before refining the tool’s algorithm. The relative bias of the present study for powders is 
considerably higher than those from other studies indicating less accurate results. In the present study, exposure 
measurements for powders were collected from only 2 ESs that might be possible to have biased results. For 
exposures to liquids with VP ≤ 10 Pa, the tool underestimated exposures (i.e., negative bias) on average but 
overestimated when the 90th percentile estimates were compared with individual measurements (%M>T = 0%). 
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Based on these findings, it seemed that the tool’s 90th percentile estimates for the aforementioned exposure 
categories demonstrated promising results, but these results were based on the limited number of exposure 
measurements (n ≤ 11) from less than or equal to 3 ESs. It is therefore necessary to collect more exposure 
measurements covering diverse exposure situations to draw firmed conclusions.   

For exposures to liquids with VP > 10 Pa having sufficient number of exposure measurements, a positive bias of 
0.3 and a relative bias of 29% demonstrated overestimation of the tool on average with an excellent  accuracy 
(Table 3). The calculated precision of 2.1 was similar to those reported by Koppisch et al. (2012) and Schinkel et 
al. (2010) ranging from 1.5 to 1.8.  When individual exposure measurements were compared with the tool’s 90th 
percentile estimates, the proportion of M>T was close to 10%, suggesting the tool to overestimate the 90th 
percentile of the exposure measurement distribution. Surprisingly, the previous study by van Tongeren et al. 
(2017) and the present study showed almost identical %M>T for this category. Vink et al. (2010) evaluated the 
Stoffenmanager v4.0 using 1-methoxypropan-2-ol measurements (n=745 extracted from German MEGA 
database) collected during professional spraying paint works and reported that the tool’s 75th percentile estimates 
were lower than the exposure measurements for 3 out of 4 tasks (75%). The tool in the present study also 
underestimated exposures but with lower %M>T (22%). Landberg et al. (2015) tested high and low volatile liquid 
chemicals from 8 tasks and reported ~27%M>T, whereas the present study showed less percent (%M>T = ~ 14%). 
Overall, the tool appeared to be accurate and robust enough to predict exposure estimate for this category, and 
the findings of this study may lead users in favour of adopting this tool.  

Table 7. Summary of %M>T and relative bias (%) for the Stoffenmanager 

Exposure category Percentage of exposure measurements exceeding the tool 90th 
percentile estimates (%M>T) 

Relative Bias (%) 

Ref 1 Ref 2 Ref 3 Ref 4 Present Ref 1 Ref 2 Present 
Aqueous Solutions N/A N/A N/A N/A 0 (n=4) N/A N/A 332 
Liquids with VP ≤ 10 Pa 15 (n=40) N/A 38 (n=8) 26 (n=210) 0 (n=5) -62 N/A -56 
Liquids with VP > 10Pa 7 (n=72) N/A 22 (n=27) 14 (n=1326) 15 (n=251) -11 N/A 29 
Powders 29 (n=82) 11 (n=390) N/A 0.9 (n=118) 0 (n=11) -77 -25 2003 
Solid Objects N/A N/A N/A N/A NC N/A N/A NC 

Ref 1-Schinkel et al. (2010); Ref 2 – Koppisch et al. (2012); Ref 3 – Spinaze et al. (2017); Ref 4 – van Tongeren et al. (2017); n=number of exposure 
measurements; N/A = Not applicable; NC = Not calculated because of zero exposure estimation of the tool  

For the category of solid objects, workers handled finished solid bars wires for all 3 ESs (ESs 8, 10 and 12) and the 
tool assumed almost no exposure emission (based on the physical form), leading to zero modelled exposure levels. 
In practice, we observed exposure ranges from 0.001 to 0.083 mg/m3 (GM 0.02 mg/m3) for a full-shift and from 
0.002 to 0.33 mg/m3 (GM 0.03 mg/m3) for a task-based exposure, although the exposure ranges were low. It 
seemed that the tool did not account background exposure that could be always present in real workplaces. The 
findings of this study clearly suggest that the tool’s mechanism should be reviewed not to predict zero exposure 
for handling solid objects. 

When considering the impact of handling description, it is recommended to review the algorithm of the LS 
(handling of liquids on large surfaces or large work pieces) task that resulted in underestimation of exposures 
(based on a negative bias of -3.0 and 83%M>T). The impact of input parameters for liquids with VP > 10 Pa analysis 
showed that the allocation of high or medium vapour pressure  and the LEV absence resulted in higher %M>Ts 
compared to the other allocation for each input parameter. Lamb et al. (2015) showed similar %M>Ts for the 
medium (18%) and low (5%) vapour pressure inputs , whereas the %M>T for the high VP was lower (3%) compared 
to the present study (19%) (Table 5). Interestingly, the allocation of LEV between the Lamb et al. study and the 
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present study resulted in conficting results (%M>T of LEV presence vs absence- 0% vs. 18% [this study] and 30% 
vs. 2% [Lamb et al.]). One suggestion might be that the tool developer reviews the assigned scores to the allocation 
of vapour pressure and LEV inputs.  

In summary, the Stoffenmanager seems accurate and robust but still there are areas for improvement of the tool. 
It needs to be noted that the tool’s exposure estimates tend to overestimate the real task-based exposures 
because we adopted the lowest control method to predict exposure estimate when multiple control methods 
were present. Hence another suggestion for modifying the tool will be to allow it to account for multiple sub-tasks 
via its web-version. This could be particularly relevant and useful for small and medium sized enterprises where 
workers are very likely to perform multiple sub-tasks. Frequently however, clear distinctions between different 
(sub) tasks are difficult to be made. For example, a batch maker performs a batch-making task by performing 
several sub-tasks with different control strategies (pouring raw material by opening the top of a batch with a 
flexible duct located right above the opening, mixing the materials in a completely enclosed system, and placing 
the product into several containers under partially closed system). One way to resolve this may be to allow the 
tool to simulate multiple sub-tasks (i.e., based on different control methods).  

ART: For aqueous solutions, liquids with VP ≤ 10 Pa, and solid objects, observed negative biases and high %M>Ts 
(≥ 25%) demonstrated that likely ART underestimates exposures (Table 3). For the powders, although no exposure 
measurements exceeded the tool’s estimates (50th, 75th, and 90th percentiles), the relative bias is considerably 
higher than those estimated for other categories indicating less accurate results. Again, these findings were based 
on the limited number of ESs and exposure measurements (ES no = 2 or 3 and n ≤ 11) and hence no firm 
conclusions can be drawn.  

For exposures to liquids with VP > 10 Pa, a negative bias of -0.7 and %M>T above 40% for all percentile estimates 
suggest that the tool’s prediction underestimates exposure. These findings are in agreement with Spinazze et al. 
(2017) who reported ~ 25% of exposure concentrations exceeding the tool’s 90th percentile predictions (n=28; 
exposure data extracted from previous studies) for organic solvents. However, Hofstetter et al. (2013) reported 
that the ART 50th percentile estimate was about 2.9 times higher than the exposure measurements of toluene in 
laboratory-based spray painting tasks which is contradictory to the present results which showed ART’s 50th 
percentile estimates to be considerably lower than the exposure measurements.   

As expected from the results of exposures to liquids with VP > 10 Pa, all activities but NAF (Activities with relatively 
undisturbed surfaces [no aerosol formation]) showed %M>Ts greater than 30%, warranting the tool developer’s 
attention for these activities. For the NAF activity, results are inconclusive because only one ES was considered, 
however the tool generally overestimated exposures. In addition, the tool’s performance based on the allocation 
of vapour pressure input parameter was determined to be poor, showing negative biases and > 20% of M>T for 
all choices (high, medium, and low VP).   

Based on the findings of this study, it is evident that ART underestimates exposures and tool developers should 
focus on two potential underlying sources: a) calibration of the ART algorithm and b) reviewing assigned scores 
representing exposure variability. As described above, the present study cannot determine if the tool’s 
underestimation was from calibration errors due to insufficient exposure measurements per exposure situation. 
The tool developers might want to recalibrate the ART algorithm by adding more exposure measurements 
collected from various exposure scenarios. The assigned scores for allocations of each input parameter were made 
based on literature searches and/or expert judgments, if not available. We strongly suggest that the tool 
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developer pays attention to the available resources (e.g., reports, peer-reviewed papers, etc.) and update the 
tool, if necessary.   

One suggestion as a transition solution is that users adopt upper confidence levels (e.g., upper value of 90% CI of 
90th percentile estimate) instead of single estimates because these values include not only exposure variability 
but also statistical uncertainty. The current study evaluated only exposure estimates using a mechanistic tool 
based on a number of exposure determinants. Combining this estimation with the tool’s internal database or the 
users’ own measurements using a Bayesian statistics can reduce its uncertainty. This would be more practical 
approach for the tool users.  

Comparison of the accuracy between the Stoffenmanager and the ART 

As shown in Table 6, the ART is more accurate than the Stoffenmanager for exposures to aqueous solutions, 
whereas the Stoffenmanager is more accurate than the ART for exposures to liquids with VP ≤ 10 Pa. The 
performance result for exposures to liquids with VP ≤ 10 Pa were consistent with the findings by Spinazze et al. 
(2017) but as aforementioned, the present study findings were based on limited data sets. For exposures to liquids 
with VP > 10 Pa, although Stoffenmanager performed slightly better than ART, both tools appeared to be equally 
accurate showing relative bias less than or equal to 16%, whereas Spinazze et al. reported that the ART was more 
accurate that the Stoffenmanager for organic solvents.  

CONCLUSIONS 

As described in Part I (Lee et al., 2017),  sufficient number of sample sizes for the present evaluation was available 
only for exposures to liquids with VP > 10 Pa. For these exposures, it was determined that ART’s accuracy is similar 
to that of Stoffenmanager. However, the high proportions of exposure measurements exceeding the ART 90th 
percentile estimates would likely discourage users from adopting this tool for their application. It is strongly 
recommended that the tool developers perform a comprehensive review of the ART’s algorithm including 
calibration and assigned scores of input parameters. In addition, the Stoffenmanager appeared to better predict 
the 90th percentile of the exposure distributions compared to ART. Both tools were developed based on the same 
concept of source-receptor approach by considering near- and far-field regions. However, ART offers a broader 
range of input parameters compared to the Stoffenmanager even for a single input parameter (e.g., control 
strategy). Therefore, users who cannot obtain all contextual information required for input parameters would be 
more beneficial to use the Stoffenmanager instead. However, Stoffenmanager still itself needs be improved, 
particularly concerning the LS task and its input parameters of vapour pressure and LEV for this category.  

For the other exposure categories, the current study was limited to low ranges of exposure levels and insufficient 
number of exposure measurements from small number of ESs. Given this limitation, the present findings strongly 
suggest needs for further validation studies by covering a broader range of ESs with large exposure data sets.  

In addition, the presence of potential errors caused from various uncertainties, such as in the interpretation of 
the input parameters, exposure measurement data, and inherent sources cannot be totally excluded from our 
study.  However, the uncertainty from exposure measurements is likely rather negligible because all personal 
exposure measurements were sampled and analyzed according to well established methodologies (e.g., NIOSH or 
OSHA methods). Similarly, the obtained consensus agreements that were used to run the tools minimise the 
uncertainty from the interpretation of the tool input parameters.  Yet as expert judgement is still involved in the 
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decision making this process could become a source of error, which could not be determined in the present study. 
Finally, the inherent uncertainty in each tool itself could be a major source of error.    
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