774 research outputs found
Recommended from our members
RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype.
Tumor subtype-specific metabolic reprogrammers could serve as targets of therapeutic intervention. Here we show that triple-negative breast cancer (TNBC) exhibits a hyper-activated cholesterol-biosynthesis program that is strongly linked to nuclear receptor RORγ, compared to estrogen receptor-positive breast cancer. Genetic and pharmacological inhibition of RORγ reduces tumor cholesterol content and synthesis rate while preserving host cholesterol homeostasis. We demonstrate that RORγ functions as an essential activator of the entire cholesterol-biosynthesis program, dominating SREBP2 via its binding to cholesterol-biosynthesis genes and its facilitation of the recruitment of SREBP2. RORγ inhibition disrupts its association with SREBP2 and reduces chromatin acetylation at cholesterol-biosynthesis gene loci. RORγ antagonists cause tumor regression in patient-derived xenografts and immune-intact models. Their combination with cholesterol-lowering statins elicits superior anti-tumor synergy selectively in TNBC. Together, our study uncovers a master regulator of the cholesterol-biosynthesis program and an attractive target for TNBC
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Spin crossover equation of state and sound velocities of (Mg_(0.65)Fe_(0.35))O ferropericlase to 140 GPa
We have determined the elastic and vibrational properties of periclase-structured (Mg_(0.65)Fe_(0.35))O (“FP35”), a composition representative of deep mantle “pyrolite” or chondrite-pyroxenite models, from nuclear resonant inelastic x-ray scattering (NRIXS) and x-ray diffraction (XRD) measurements in diamond-anvil cells at 300 K. Combining with in situ XRD measurements, the Debye sound velocity of FP35 was determined from the low-energy region of the partial phonon density of states (DOS) obtained from NRIXS measurements in the pressure range of 70 to 140 GPa. In order to obtain an accurate description of the equation of state (EOS) for FP35, separate XRD measurements were performed up to 126 GPa at 300 K. A new spin crossover EOS was introduced and applied to the full P-V data set, resulting in a zero-pressure volume V_0 = 77.24 ± 0.17 Å^3, bulk modulus K_0 = 159 ± 8 GPa and its pressure-derivative K′_0 = 4.12 ± 0.42 for high-spin FP35 and K_(0,LS) = 72.9 ± 1.3 Å^3, K_(0,LS) = 182 ± 17 GPa with K′_(0,LS) fixed to 4 for low-spin FP35. The high-spin to low-spin transition occurs at 64 ± 3 GPa. Using the spin crossover EOS and Debye sound velocity, we derived the shear (V_S) and compressional (V_P) velocities for FP35. Comparing our data with previous results on (Mg,Fe)O at similar pressures, we find that the addition of iron decreases both V_P and V_S, while elevating their ratio (V_P/V_S). Small amounts (<10%) of low-spin FP35 mixed with silicates could explain moderate reductions in wave speeds near the core mantle boundary (CMB), while a larger amount of FP35 near the CMB would not allow a large structure to maintain neutral buoyancy
Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens.
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR-pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR-pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR-pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering
Metformin extended-release versus immediate-release:An international, randomized, double-blind, head-to-head trial in pharmacotherapy-naïve patients with type 2 diabetes
This international, randomized, double-blind trial (NCT01864174) compared the efficacy and safety of metformin extended-release (XR) and immediate-release (IR) in patients with type 2 diabetes. After a 4-week placebo lead-in, pharmacotherapy-naïve adults with glycated haemoglobin (HbA1c) at 7.0% to 9.2% were randomized (1:1) to receive once-daily metformin XR 2000mg or twice-daily metformin IR 1000mg for 24weeks. The primary endpoint was change in HbA1c after 24weeks. Secondary endpoints were change in fasting plasma glucose (FPG), mean daily glucose (MDG) and patients (%) with HbA1c <7.0% after 24weeks. Overall, 539 patients were randomized (metformin XR, N=268; metformin IR, N=271). Adjusted mean changes in HbA1c, FPG, MDG and patients (%) with HbA1c <7.0% after 24weeks were similar for XR and IR: -0.93% vs -0.96%; -21.1 vs -20.6mg/dL (-1.2 vs -1.1mmol/L); -24.7 vs -27.1mg/dL (-1.4 vs -1.5mmol/L); and 70.9% vs 72.0%, respectively. Adverse events were similar between groups and consistent with previous studies. Overall, metformin XR demonstrated efficacy and safety similar to that of metformin IR over 24weeks, with the advantage of once-daily dosing
- …
