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Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides 
presented by the major histocompatibility complex (pMHC) on the surface of professional 
antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering 
critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avid-
ity. The binding and kinetic attributes of this interaction are key parameters for protective 
T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T 
cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not 
always available, particularly among self/tumor antigen-specific T cells, most of which 
are eliminated by central and peripheral deletion mechanisms. Consequently, systematic 
assessment of T cell avidity can greatly help distinguishing protective from non-protec-
tive T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, 
enabling the identification of the functionally most-relevant T cells. We also discuss the 
significance of these technologies in determining which cells within a naturally occurring 
polyclonal tumor-specific T cell response would offer the best clinical benefit for use in 
adoptive therapies, with or without T cell engineering.

Keywords: melanoma, immunotherapy, cytotoxic T cells, TCR affinity, TCR structural avidity, tumor antigens,  
T cell functionality, NTAmers

wHAT DeFiNeS A PROTeCTive CD8 T CeLL ReSPONSe?

Antibody- and T Cell-Based immunotherapies
During the last few years, immunotherapy has brought significant progress to clinical oncology. 
Major breakthroughs were made for melanoma patients (1–4), and progress becomes also evident 
for patients with frequent diseases, such as lung and kidney cancer (5). Specifically, immunotherapy 
aims at mobilizing the body’s immune cells to fight against cancer in highly specific ways. Several 
strategies have been developed over the last two decades to exploit the therapeutic potential of T 
cells (6). Administration of high-dose IL-2 (7) and tumor-associated (TA)-specific monoclonal 
antibodies (mAbs) (8) has initially provided long-term clinical benefits, albeit only for relatively few 
patients. More recently, mAbs that target immune checkpoints have shown remarkable results. In 
2010, the successful outcomes of randomized phase III clinical trials with the anti-CTLA-4-specific 
mAb Ipilimumab offered strong clinical evidence that in humans, as in experimental animal mod-
els, the host’s immune system can control tumor growth (9). So far, several antibody-based drugs 
(anti-CTLA-4 mAb Ipilimumab-Yervoy, anti-PD-1 mAb Nivolumab-Opdivo, and anti-PD-1 mAb 
Pembrolizumab-Keytruda) have been approved for the treatment of melanoma, and the first FDA 
approval for carcinoma took place earlier this year, with the introduction of Opdivo for routine 
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therapy of patients with non-small-cell lung cancer. Importantly, 
the rapidly increasing use of these antibodies represents a major 
breakthrough in the treatment of cancer patients (1, 2, 4, 9–11).

Already prior to immune checkpoint inhibitors, several lines 
of evidence suggested that antitumor immune responses might 
correlate with clinical outcome in patients with cancers. Among 
them is the very frequently observed correlation between the 
presence of tumor-infiltrating CD8 T cells and the improved 
clinical outcome for patients with solid tumors (12–14). The 
notion that antitumor T cells play a major role in controlling 
tumor growth was also largely demonstrated in clinical trials with 
adoptive transfer of autologous tumor-infiltrating T lymphocytes 
(TILs) (15). Even though technically and clinically challenging, 
the results are promising in terms of objective clinical responses 
and durability of responses (3, 16, 17). Moreover, genetic modi-
fication of T cells before adoptive cell transfer, such as inserting 
T cell receptors (TCRs) (18) and chimeric antigen receptors (19), 
was shown to further increase the clinical efficacy.

Despite that both antibody- and T cell-based immunothera-
pies can improve clinical outcome in cancer patients, multiple 
challenges still lay before us to improve the efficacy of cancer 
immunotherapies in the clinic. Indeed, many patients continue 
to experience disease relapse and/or progressive disease despite 
receiving these novel immune-based treatments. The potential 
reasons for this cancer “resistance” and “evasion” are based on 
cancer cell-internal and -external mechanisms, i.e., the two back-
bones of malignant diseases. For the former, cancer cells develop 
intrinsic therapy resistance. As for the latter, cancer cells corrupt 
the surrounding tissue microenvironment to support their own 
growth and suppress the anticancer immune responses. In short, 
the tumor cells and their microenvironment become a “wound 
that never heals” (20).

CD8 T Cells Play a Central Role in  
Tumor-Specific immune Responses
The recent immunotherapy successes in clinical oncology were 
build on the profound experience acquired over the years in 
hemato-oncology, as well as an increase in understanding of the 
roles of T cells in generating a potent and sustained antitumor 
immune response. After allogeneic hematopoietic stem cell 
transplantation, the graft-versus-leukemia effects assure long-
term remission of patients with hematological malignancies. 
Importantly, T cells play a central role in graft-versus-leukemia 
by controlling tumor growth, progression, and recurrence. 
Similarly, T cells are also essential players in generating a protec-
tive and durable immune response against solid tumors. T cells 
can act against both cancer cell-internal and -external resistance 
mechanisms. First, they can specifically target and directly 
destroy cancer cells. Second, they can revert a tumor-promoting 
microenvironment into a tumor-hostile one, by changing the 
patient’s tumor biology toward a “healing wound.” Moreover, as 
therapeutic successes depend on broad and long-term protection, 
T cells are important players since, in contrary to pharmaceu-
tical drugs alone, they can generate a therapeutic memory. 
Therefore, by furthering the development of novel T cell-based 
therapies against cancer, therapeutic pressure could be applied 

simultaneously against both malignancy backbones, and tumor 
escape would be minimized.

For successful immune defense, activated antigen-specific T 
cells must reach high frequencies, differentiate into numerous and 
powerful effector and memory cells, and exert multiple functions. 
To achieve this, T cells must first be primed following the specific 
recognition by the TCRs of antigenic peptides bound to self-
major histocompatibility complex (MHC) molecules (referred 
to as pMHC thereafter) at the surface of antigen-presenting cells 
(APCs). Second, upon differentiation and expansion, T cells 
must migrate and localize to the tumor bed. An essential point 
is that the TCR–pMHC interaction should be sufficiently strong 
to enable the efficient recognition of tumor antigens (which are 
naturally presented at low levels) and to trigger potent tumor-
specific T cell effector functions. Finally, robust memory T cells 
must be established, assuring long-term immune responses for 
durable disease control.

Since T cells play a major role in immune protection against 
cancer, it is important to determine which T cell properties 
are essential to achieve clinical benefit. Several “correlates of 
protection” have been identified; TCR–pMHC binding affinity/
avidity, T cell frequency, poly-functionality, poly-clonality, 
poly-restriction (i.e., T cells specific for multiple antigens that 
are presented by different HLA alleles), migration to the tumor, 
and survival/persistence (21) (Figure 1). The assessment of these 
criteria can greatly help distinguishing between powerful and 
ineffective antitumor T cell responses and thus provides essential 
information on the quality of a patient’s immune response. In this 
review, we will specifically focus on T cell avidity, both in terms of 
TCR–pMHC binding properties and functional capacities.

Functional Avidity of CD8 T Cells
The functional avidity is a biological measure that describes how 
well a T cell responds in vitro to a given peptide concentration. 
It is determined by the in vitro quantification of T cell functions, 
such as cytotoxic activity, IFN-γ production, and proliferation. 
Pioneering the field more than 20  years ago, we demonstrated 
that low T cell avidity is sufficient for in  vitro proliferation or 
cytotoxicity to peptide-coated target cells but not for in  vivo 
protection (22), a finding that was subsequently confirmed and 
extended by others (23). Meanwhile, there is a general consensus 
that CD8 T cell responses with increasing functional avidity are 
better in controlling virus infections (24, 25). There exists a close 
relationship between T cell functional avidity and target cell rec-
ognition, as shown in several antigenic systems (23, 24, 26–29).

In 1998, an elegant study revealed important insights into the 
roles of essential parameters for in vivo protection from lympho-
cytic choriomeningitis virus (LCMV) in mice (30). Besides the 
functional avidity of T cells, the authors analyzed the density of 
peptide antigen on infected cells, the binding strength of peptide 
to MHC, the magnitude of T cell responses, and the broadness 
of the TCR repertoire. They found that the T cells specific for the 
NP396 peptide provided the highest protection, based on their 
highest functional avidity and strongest binding of NP396 to 
MHC. Interestingly, the least protective were the T cells specific 
for GP33, despite their highest magnitude and TCR diversity, and 
a GP33 peptide density on infected cells about sixfold higher than 
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of NP396. Finally, T cells specific for GP276 showed an interme-
diate potency for protection, based on intermediate functional 
avidity, but lowest TCR diversity, to the peptide with the lowest 
density (30). Also for T cell responses against tumors, results 
obtained from both mouse and human models suggest that T 
cells of high functional avidities (31) and strong peptide binding 
to MHC (32) are required for efficient protection.

Together, functional avidity stands out as a highly important 
correlate of protection (Figure  1). Nevertheless, functional 
avidity has yet to be evaluated much more systematically in 
the development and routine application of immunotherapy. 
Limitations of laboratory techniques are the major reasons why 
this is infrequently done. In general, T cell assessment is mostly 
limited to assays measuring antigen specificity, target cell killing 
and cytokine production (e.g., IFNγ) to fixed stimulation doses 
(17, 33–36). Importantly, these functional assays do not directly 
measure the TCR–pMHC affinity or avidity (Figure 1), despite 
representing a major determinant of T cell responsiveness and 
possibly a more relevant metric of the T cell response.

wHAT DeFiNeS AN OPTiMAL SeLF/
TUMOR ANTiGeN-SPeCiFiC CD8 T CeLL 
ReSPONSe?

TCR–pMHC Affinity, Avidity, and Structural 
Avidity
T cell receptor–pMHC binding and kinetic interactions can be 
measured in terms of affinity or avidity. The TCR–pMHC binding 
affinity refers to the physical strength by which a single TCR binds 
to a single pMHC complex (37) and is inversely proportional to 
the dissociation equilibrium constant KD. Under equilibrium 
conditions, KD is defined as the ratio of the dissociation rate and 
association rate (koff/kon), which are typically measured by surface 
plasmon resonance (SPR) (Figure 2). The rate at which the TCR 
dissociates from the pMHC complex, referred to as t1/2 (or half-
life), represents another important parameter, and is related to the 

FiGURe 1 | identifying antitumor T cells of high avidity and high function for adoptive cell transfer immunotherapy. General outline presenting a 
step-by-step optimized protocol for the identification and adoptive transfer of the most potent tumor-specific CD8 T cells in cancer patients. (A) The selection of 
therapeutic autologous CD8 T cells (isolated from the tumor or from PBMC) is based on the following correlates of protection parameters that include structural 
TCR–pMHC affinity/avidity, T cell frequency, polyfunctionality (with differentiation and effector properties), poly-clonality, and poly-restriction to multiple antigens 
presented by different HLA alleles, cell migration capacity to the tumor site, as well as memory/survival properties with long-term persistence. (B) Selected T cells 
with optimal combination of those correlates will be isolated and expanded ex vivo, before being re-infused back in the patient. These selected tumor-specific CD8 
T cell subpopulations should be highly effective at targeting and eliminating tumors in vivo and achieve enhanced and durable clinical benefits.

dissociation rate constant koff by the equation t1/2 = ln 2/koff (38). 
Conversely, the TCR avidity describes, in the cellular context, the 
association of multiple TCRs with their respective pMHC com-
plexes (39). TCR–pMHC avidity depends on the TCR affinity and 
incorporates the potential effects of coreceptors (e.g., CD8), TCR 
density, and T cell functional (activation) status (40). Using the 
novel NTA–His tag-containing multimer technology (also termed 
NTAmers), we recently quantified monomeric TCR–pMHC dis-
sociation rates (koff or t1/2) of living tumor antigen-specific CD8 T 
cells (41, 42). Since NTAmers (TCMetrix, Epalinges, Switzerland) 
allow the quantitative assessment of TCR–pMHC binding inter-
actions directly at the monomeric level and include the binding 
of the CD8 coreceptor, we now refer to this type of measurement 
as the structural TCR–pMHC avidity (42) (Figure 2). Finally, the 
overall CD8 T cell response is defined as the functional avidity and 
depends on the productive TCR–pMHC interactions, integrating 
the binding of multiple TCR–pMHC complexes and coreceptors 
together with the strength of cell–cell interactions (39).

Antiself/Tumor-Specific CD8 T Cell 
Responses Are Mediated by TCRs of Low 
Affinity/Avidity
The TCR–pMHC affinity and avidity vary dramatically between 
self and non-self-antigens (Figure  3). TCRs that interact with 
non-self peptides are frequently found among naive T cells and 
cover the whole physiological affinity range (29), with a preferen-
tial distribution of KD found between 25 and 1 μM (43). In fact, it 
is now commonly accepted that immune responses to pathogens 
are dominated by cytotoxic T cells that express high-affinity TCRs 
(44, 45). By contrast, mature CD8 T cells specific for self/tumor 
antigens express TCRs of weak TCR–pMHC affinity (43), whereas 
high-affinity cells are very rare due to mechanisms of central and 
peripheral tolerance (46) (Figure 3). The KD values of these inter-
actions are typically in the range of 200–10 μM (with the mean 
around 100 μM) (43). Indeed, most TA antigens, such as cancer 
testis antigens (e.g., NY-ESO-1 and MAGEs) and differentiation 
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FiGURe 2 | Schematic representations integrating the different assessment levels of TCR–pMHC binding interactions. TCR–pMHC affinity (A) refers to 
the binding strength of one TCR to one pMHC complex and is typically assessed by SPR (also defined as 3D interaction). At the cellular level (e.g., living antigen-
specific CD8 T cells), the TCR–pMHC structural avidity (B) refers to the strength of interaction between monovalent TCR–pMHC complexes, as measured by 
reversible multimers (e.g., NTAmers, Streptamers). Importantly, monomeric binding measurements contrast to the multimeric TCR–pMHC binding avidity (C), which 
integrates the binding strength of multiple TCRs and pMHC complexes and is conventionally assessed by fluorescent pMHC multimers of known valency (e.g., 
tetramers). Recently, 2D-kinetic measurements (D) enable the assessment of TCR–pMHC binding affinity directly at the interface between a living T cell and a 
juxtaposed surface (e.g., a supported planar lipid bilayer or a surrogate APC) using fluorescent-based or micropipette adhesion frequency assays. T cell functional 
avidity (e) refers to the productive TCR–pMHC triggering integrating multiple TCR–pMHC binding interactions and represents the relative efficiency of T cell 
functionality as assessed in the presence of titrated peptide concentrations in various biological read-outs (e.g., target cell killing, cytokine production and 
proliferation potential).

FiGURe 3 | Peripheral T cell repertoires available to respond to non/self- and self-antigens are shaped according to the TCR–pMHC affinities of 
individual T cells. (A) After thymic selection, CD8 T cells specific for non-self (foreign) antigens express TCRs that span the entire physiological range from low 
(100 μM) to high (1 μM) affinity (depicted as colored arcs). In these non-self-specific repertoires, a large proportion (depicted as dark blue gradients) of T cells bear 
TCRs of intermediate to high-affinity TCRs (orange-red arcs). (B) Due to self-tolerance mechanisms, most but not all self/tumor antigen-specific T cells of 
high-affinity TCRs are deleted (red arcs). Consequently, T cell repertoires specific for self/tumor antigens are mainly composed (dark blue gradients) of low affinities 
(yellow arc). (C) T cells recognizing neoantigens are not deleted by self-tolerance mechanisms, since tumor-specific mutations generating neoantigens are “non-self 
like” epitopes. Thus, the repertoire of neoantigen-specific T cells is composed of increased proportions (dark blue gradients) of tumor-specific and high affinities 
TCRs (red arc).

November 2015 | Volume 6 | Article 5824

Hebeisen et al. High Structural and Functional Avidity TCRs

Frontiers in Immunology | www.frontiersin.org

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5825

Hebeisen et al. High Structural and Functional Avidity TCRs

Frontiers in Immunology | www.frontiersin.org

antigens (e.g., Melan-A/MART-1, gp100, and tyrosinase) (47, 48), 
are expressed in the thymus (49). Consequently, thymocytes with 
high TCR–pMHC affinity/avidity for these antigens are negatively 
selected. Self/tumor-reactive T cells can further be eliminated 
in the periphery through mechanisms of peripheral tolerance 
(50). Nonetheless, these mechanisms spare cytotoxic T cells that 
can react to self/tumor antigens with relative low TCR–pMHC 
affinity/avidity (51–53) but which might be too low to mediate an 
effective antitumor immunity (Figure  3). Therefore, increasing 
the TCR–pMHC affinity and/or avidity of tumor-specific T cells 
is of particular interest for immunotherapy based on adoptive 
T cell transfer.

improving TCR–pMHC Affinity/Avidity 
Against Cancer Cells
Strategies developed to improve TCR–pMHC affinity involve 
the modification of TCR sequences by inserting point muta-
tions within the complementary-determining regions (CDRs) 
of the variable domains of TCR αβ chains (54), and followed 
by the screening of yeast or phage variant libraries (55, 56). 
Such approaches result in the generation of TCR variants with 
supraphysiological binding strengths for peptide-MHC ligands 
up to the picomolar affinity range (55–57). However, as yeast and 
phage display technologies rely on large libraries and are based 
on random mutagenesis, the generation of such TCR mutants 
may be associated with loss of target cell specificity. In fact, T 
cells engineered with TCRs of very high affinities (KD < 1 nM) 
become crossreactive (or alloreactive) to other pMHC complexes 
(58–60). To overcome this problem, TCR–pMHC affinity can 
be optimized in a highly controlled manner by structure-based 
methods (61–63). These approaches consist of in silico analyses 
made on available crystallographic structures of TCR–pMHC 
complexes and aim at identifying the key residues critically 
involved in the TCR–pMHC interactions. Such residues can 
subsequently be replaced with other structurally compatible 
ones, resulting in either increased or decreased TCR–pMHC 
affinity (64). The structure-based design of TCRs allows an 
increase of the TCR–pMHC affinity, while preserving antigen 
specificity and avoiding broad crossreactivity to other pMHCs 
(62, 65).

Through stepwise rational design of TCR–pMHC affinity (63, 
64), we created a unique panel of human CD8 TCRs specific 
for the cancer testis antigen NY-ESO-1157–165 presented by HLA-
A*0201 (defined as A2 thereafter) (66). This affinity-optimization 
process resulted from the introduction and combination of point 
mutations either within the CDR2α and CDR2β regions, and/
or within the CDR3β region (63, 64). The TCR–pMHC bind-
ing and kinetic parameters (KD, koff, and kon) derived from SPR 
confirmed the in silico predicted changes in TCR affinity for A2/
NY-ESO-1157–165, with KD values ranging from 100 μM to 15 nM 
(65). By characterizing the functional potential of T cells express-
ing this panel of affinity-optimized TCRs, we found that T cells 
expressing TCRs with affinities lying in the upper physiological 
range (KD from 5 to 1 μM) displayed greater biological responses 
(e.g., cell activation, signaling, proliferation, cytokine/chemokine 

secretion, and target cell killing) than T cells expressing inter-
mediate/wild-type TCRs (KD at 21.4  μM) or very low affinity 
(KD > 100 μM) (65–67).

Strikingly, further increase within the supraphysiological 
TCR affinity range (KD < 1 μM) led to drastic functional decline, 
with impairment in global gene expression and surface expres-
sion of activatory/costimulatory receptors (65, 67). Yet, such 
engineered T cells retained a high degree of antigen specificity 
toward the cognate pMHC (65). Importantly, T cell effective-
ness was limited by at least two mechanisms. We observed 
preferential PD-1 expression on T cells expressing very high 
TCR affinities, as well as a full functional recovery upon PD-1 
ligand blockade. In contrast, the upregulation of SHP-1 and 
SHP-2 phosphatases was broad, with the gradual enhanced 
expression in engineered T cells along the TCR affinity gradi-
ent (67). Together, these observations revealed that maximal 
biological activity, for the panel of human A2/NY-ESO-1157–165-
specific engineered CD8 T cells, occurred within a well-defined 
affinity window with KD ranging from 5 to 1 μM, above which 
T cell effectiveness was limited by TCR-mediated regulatory 
mechanisms (67).

TCR–pMHC Affinity Threshold for Maximal 
Antitumoral CD8 T Cell Responses
Our findings nicely fit with other studies performed both in 
mice and human models, as well as in pathogen- and self/tumor-
specific T cell responses strongly supporting the notion that T 
cell activation, signaling and subsequent function are limited to 
a given TCR–pMHC affinity window. It is known that a minimal 
threshold of TCR–pMHC binding is required for CD4 and CD8 
T cell activation (68–72). Moreover, under physiological condi-
tions, i.e., within the natural TCR affinity range (KD from 200 to 
1 μM) and under low peptide concentrations, numerous stud-
ies now provide strong evidence that enhanced TCR–pMHC 
affinity (KD) or off-rate (koff) correlates with improved T cell 
responsiveness (59, 60, 62, 65, 66, 73–83). However, the cor-
relation between TCR–pMHC affinity and T cell function is not 
linear as there is a decrease in functionality for TCR–pMHC 
interactions taking place beyond the natural TCR affinity range 
(KD < 1 μM) (65, 67, 81, 84, 85) or with prolonged half-lives (75, 
77, 78, 80, 86).

Kalergis and colleagues were the first to propose that T cell 
activation might occur within an optimal range of half-life for 
TCR–pMHC interactions (78). Using altered peptide ligands 
derived from the ovalbumin OVA257–264 peptide, they showed that 
the duration of TCR–pMHC interactions (t1/2) regulated effector 
function and tumor-killing capacities of OT-1-specific CD8 T 
cells (80). Specifically, intermediate TCR–pMHC half-lives 
induced the strong expression of cytotoxic effector molecules, 
cytokine secretion, and consequently the efficient in vivo tumor 
clearance mediated by cytotoxic T lymphocytes (CTLs) (80). In 
line with these observations, Corse et  al. studied the effect of 
TCR–pMHC interaction parameters on in vivo CD4 T cell acti-
vation, effector and memory responses upon immunization with 
lipopolysaccharide and moth cytochrome c (MCC) peptide, or 
related ligands exhibiting a range of TCR–pMHC half-lives (77). 
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They found that the in vivo response to a superagonist ligand for 
the MCC-reactive TCR was associated with attenuated intracel-
lular signaling, proliferation and effector functions over time 
following immunization. These data pointed to an upper limit 
of T cell ligand potency in vivo, with optimal T cell responses 
occurring to TCR–pMHC interactions of intermediate half-lives 
(77). Similar conclusions were reached in another study using 
vaccination with a panel of AH1 peptide ligands of increasing 
affinities specific for the immunodominant H-2Ld-restricted 
antigen from the colon tumor CT26 (84). Data from this report 
revealed that although TCR–pMHC affinity correlated well with 
the functional activity of the T cell clone in vitro, only vaccina-
tion with peptide ligands of intermediate affinities elicited func-
tional T cell responses and provided best tumor growth control 
in BALB/c mice. Lastly, Kranz and colleagues explored the 
functional impact of increased TCR–pMHC affinity using the 
well-known 2C TCR-based mouse model (54, 55, 87). Excessive 
enhancement of TCR affinity through yeast display resulted in 
crossreactivity with other cognate pMHCs (58). Furthermore, 
they reported rapid in vivo disappearance of specific CD8 T cells 
expressing the m33 TCR of nanomolar affinity through mecha-
nisms of peripheral deletion in both the TIL population and 
lymphoid organs, suggesting that TCR affinity controlled the 
survival and tumor infiltration of the transferred T cells (88, 89).

Clinical Trials with TCR Affinity-improved 
T Cells Against Tumor Antigens
The importance of TCR–pMHC binding parameters in the 
context of human antitumoral T cell mediated responses was 
originally demonstrated in clinical trials whereby melanoma 
patients received autologous peripheral blood mononuclear cells 
transduced with specific TCRs against the differentiation tumor 
antigen Melan-AMART-1

26–35 (90). Compared to the native low 
affinity TCR isolated from the patient’s TIL, referred as DMF4 
[KD 29 μM (91)], with moderate ability to recognize the tumor 
antigen, Johnson and coworkers (92) showed a trend of improved 
clinical efficacy for the DMF5 TCR of higher affinity [KD 5.6 μM; 
(91)]. Whereas objective responses were seen in 30% of patients 
who received the DMF5 TCR, several patients experienced in 
addition the destruction of normal melanocytes in the skin, ear, 
and eye, which led to uveitis and hearing loss (92). Similar studies 
based on the A2/NY-ESO-1157–165 tumor antigen model showed 
that specific CD8 T cells engineered to express a TCR (defined 
as 1G4) with affinity lying just beyond the natural affinity range 
(at KD 730 nM) were those that displayed maximal functionality 
with the lowest crossreactivity in vitro (59). Importantly, clinical 
trials conducted with this affinity-improved TCR in adoptive cell 
transfer of autologous engineered T cells in patients with meta-
static melanoma and sarcoma led to objective clinical responses 
without major adverse events (93). Recently, Tan et  al. (81) 
examined the impact of TCR affinity on the functional properties 
of human transduced CD8 T cells of three different TA peptide 
antigens (hTERT540–548, NY-ESO-1157–165, and MageA3161–169) 
across a wide range of binding parameters. These authors found 
that the TCR affinity controls T cell antigen sensitivity and poly-
functionality, further supporting the presence of an optimal 
range for CD8 T cell functional improvement but which varies 

with antigen specificity. Collectively, our data and those by others 
performed in the human tumor setting recapitulate the findings 
from mouse models, showing that maximal T cell functional 
responses occurred at intermediate TCR–pMHC binding 
strengths (Tables 1 and 2).

increasing Antitumor TCR–pMHC Affinity/
Avidity is Associated with Autoreactivity
T cell immunotherapy against cancer should ideally require T 
cells expressing affinity-improved TCRs, which efficiently control 
tumor growth without inducing on-target autoimmune reactivity 
against normal tissues expressing the same self-antigen. Yet, sev-
eral reports have shown that in contrast to T cells of low avidity, 
high-avidity tumor-specific T cell responses were often associated 
with autoimmunity (92, 94–96). Recently, using seven human 
gp100209–217-specific TCRs isolated from melanoma patients and 
covering the physiological affinity range (1–100  μM), Zhong 
et al. (83) carefully evaluated the TCR affinity threshold defining 
the optimal balance between effective antitumoral activity and 
autoimmunity in vivo. Their results revealed that T cell antitumor 
activity and autoimmunity were closely coupled, whereby increas-
ing TCR affinity/avidity correlated with improved tumor regres-
sion but was also associated with severe ocular autoimmunity in 
adoptively transduced A2-Kb mice. Together, these observations 
suggest that a relatively low-affinity threshold may be required for 
the immune system to avoid self-damage (KD around 10 μM for 
A2/gp100209–217) (83). Intriguingly, another recent study reported 
that two TCR variants of increased binding interactions for the 
WT1 self/tumor antigen compared to the wild-type TCR were 
safe and did not mediate autoimmune tissue infiltration or dam-
age when transduced into peripheral CD8 T cells and transferred 
in  vivo (97). These findings are supported by a recent clinical 
trial showing that the usage of T cells transduced with a TCR of 
increased affinity for the cancer testis antigen A2/NY-ESO-1157–165 
[1G4 α95:LY, KD at 730 nM; (59)] did not lead to autoimmun-
ity in melanoma and sarcoma patients (93). These apparently 
contradicting results could be explained by the differences in 
distribution and expression levels of self/tumor antigen expres-
sion in normal tissues and in tumors. For instance, NY-ESO-1 is 
expressed in very restricted germinal tissues (e.g., in testis cells) 
and WT1 antigen is expressed at low levels in normal self-tissues. 
This contrasts with other self/tumor antigens, such as Melan-A, 
gp100, and tyrosinase, that are widely found in melanocytes of 
the skin, eye, and ear, and whose expression has been shown to 
lead to melanoma/melanocyte-associated autoimmunity (92, 96, 
98). Consequently, the choice of antigen specificity for adoptive 
cell transfer of affinity-improved T cells is of crucial importance.

Neoantigens, which result from gene mutations or aberrant 
expression in tumor cells and whose expression is uniquely 
found in tumor tissues, may represent ideal and safe targets for 
T cell therapy (99). Recently, using whole-exome sequencing 
combined with MHC-binding algorithms, Robbins et  al. (100) 
identified mutated antigens expressed on autologous tumor cells 
that were recognized by three TIL lines from three melanoma 
patients. Importantly, these patients demonstrated regression 
of bulky metastatic lesions after adoptive transfer of autologous 
TILs, suggesting that neoantigens were able to generate strong 
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TABLe 1 | engineered tumor-specific CD8 T cells with affinity-optimized TCR panels.

Self-tumor/
antigen-
specific model

TCR/pMHC affinity/
avidity assay

In vitro functional assay In vivo 
functional 
assay

Correlation between TCR/pMHC affinity/avidity 
and T cell functionality

Reference

6 NY-ESO1-
spec TCR 
mutantsa

SPR (KD, kon, and koff) IFNγ avidity and killing ✓  SPR-KD-High T cells display higher functional avidity 
but also crossreactivity

(60)

4 NY-ESO1- and 
6 Melan-A-spec 
TCR mutantsa

SPR (KD, kon, and koff) IFNγ avidity and killing ✓  SPR-KD-High T cells display higher functional avidity 
but also crossreactivity

(59)

9 NY-ESO1-
spec TCR 
mutantsa,b

SPR (KD, kon, and koff) 
and multimers (MFI, 
on/off-rate)

Killing avidity, proliferation and 
TCR clustering

✓  SPR-KD/koff and multimer off-rate correlate with 
functional avidity until a supraphysiological TCR 
affinity threshold

(66)

9 NY-ESO1-
spec TCR 
mutantsa,b

SPR (KD, kon, and koff) 
and multimers  
(off-rate)

Killing, Ca2+ flux, IFNγ avidity, 
TNFα, Il-2/4/8, CD107a and AICD

✓  SPR-KD/koff and multimer off-rate correlate with 
functional avidity until a supraphysiological TCR 
affinity thresholdd

(65)

9 NY-ESO1-
spec TCR 
mutantsa,b

SPR (KD, kon, and koff) TCR/CD8 modulation, signaling 
and gene expression

✓  SPR-KD correlates with cell functionality until a 
supraphysiological TCR affinity thresholdd

(67)

7 gp100-spec 
natural TCRsc

SPR (KD) and  
multimers (MFI)

Killing, Ca2+ flux, IFN-γ and ERK 
phosphorylation

Tumor-size and 
autoimmunity

✓  SPR-KD and multimer MFI correlate with cell 
functionality until a supraphysiological TCR affinity 
threshold

(83)

5 NY-ESO1-/6-
MAGE-A3-spec 
TCR variantsa

SPR (KD, kon, and koff) CD107a, IFNγ, TNFα, and IL-2 
avidity

✓  SPR-KD correlates with poly-functionality until a 
supraphysiological TCR affinity thresholdd

(81)

9 NY-ESO-
1-spec TCR 
variantsb

NTAmers (MFI, off-rate) Ca2+ flux avidity ✓  NTAmer off-rate correlates with Ca2+ flux avidity 
until a supraphysiological TCR affinity thresholdd

(42)

aTCRs were transfected/transduced within human primary CD8 T cells.
bTCRs were transfected/transduced within human SUP-T1 cells.
cTCRs were transfected/transduced within mouse CD8+/− splenocytes.
dCorrelation between TCR–pMHC affinity and T cell functionality is not linear with a functional decline for TCR–pMHC interactions taking place beyond the physiological affinity range 
at KD < 1 μM.
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immune responses in those patients. Tumor-derived neoantigens 
can trigger potent T cell immunity (101), probably because 
they are perceived as foreign by the immune system, allowing 
neoantigen-specific T cells to escape negative selection and 
express high-affinity/avidity TCRs (102). Thus, similar to non-self 
specificities, T cells recognizing neoantigen should theoretically 
express TCR–pMHC affinities spanning the entire physiological 
range with possibly a large proportion of high-affinity TCRs 
(Figure 3).

Off-Target Toxicities in Clinical Trials Using 
TCR Affinity-improved T Cells
Another important parameter to be considered when using 
TCR affinity-improved T cells for adoptive-based therapies is 
that such cells also bear the risk of increased crossreactivity to 
structurally related self-peptides, resulting in off-target toxicities 
(103). Recently, two patients treated with TCRs engineered for 
enhanced affinity toward the cancer testis HLA-A1/MAGE-A3 
tumor antigen developed off-target recognition of a similar but 
not identical peptide from the cardiac muscle-specific protein 
Titin (104), resulting in cardiogenic shock and death within a few 
days of T cell infusion (105). Another clinical trial based on the 
infusion of autologous anti-HLA-A2/MAGE-A3 TCR-engineered 

T cells further revealed unpredictable adverse effects with a pos-
sible crossreactivity to the MAGE-A12 self-antigen expressed in 
rare neurons, and leading to neurologic toxicities and death in 
two patients (106). These results highlight not only the functional 
potency of affinity-improved T cells toward tumor target cells but 
also the urgent need for improved preclinical systems to carefully 
assess on-target and off-target reactivity (e.g., in silico proteome 
screens and in vitro peptide specificity assays), to ensure the safety 
of self/tumor-specific TCR-engineered T cells in future clinical 
trials (99, 103, 107).

Collectively, we and others (108, 109) propose that the rational 
design of improved self/tumor-specific TCRs for adoptive T cell 
therapy may not need to be optimized beyond the natural TCR 
affinity range (KD < 1 μM) to achieve optimal T cell function and 
avoiding possibly unpredictable risk of crossreactivity. Indeed, 
antigen-specific T cells may only naturally function within a 
well-defined narrow range of affinities under most conditions to 
ensure optimal responses against foreign pathogens and minimal 
responses against autoantigens (109). In that regard, new tech-
nological strategies are currently required allowing identifying 
and selecting for those naturally occurring but rare self/tumor 
antigen-specific T lymphocytes of the highest TCR affinity/avid-
ity and functional capacities within the physiological TCR affinity 
range (Figure 3), as described below.
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TABLe 2 | Tumor-specific CD8 T cell clones identified by the altered ligand peptide approach.

Self-tumor/antigen-
specific model

TCR/pMHC 
affinity/avidity 
assay

In vitro functional assay In vivo functional  
assay

Correlation between TCR/pMHC affinity/
avidity and T cell functionality

Reference

Mouse GP70-spec 
CTL clone versus 7 
mimotopes

SPR (KD) and 
multimers (MFI)

IFNγ and proliferation avidity Tumor-free survival ✓  SPR-KD and multimer MFI correlate with 
functional avidity until a supraphysiological 
TCR affinity thresholda

(84)

Mouse OT-1 T cells 
versus 6 mimotopes

SPR (t1/2) Killing, IFNγ, IL-2, CD69, 
CD107a, granzyme B, and 
granule polarization avidity

Tumor size, survival and  
T cell tumor infiltration

✓  SPR-t1/2 correlates with functional avidity 
until a supraphysiological TCR affinity 
thresholda

(80)

Human NY-ESO1-
spec CTL clone versus 
2 mimotopes

SPR (KD) IFNγ, MIP-1β, Ca2+ flux, 
granule polarization, and 
target conjugation-avidity

✓  SPR-KD correlates with functional avidity, 
target-cell conjugation, granule polarization 
potency, and internal Ca2+ stores depletion 
intensity

(76)

Human NY-ESO1-
spec CTL clone  
versus 17 mimotopes

SPR (KD, kon, 
and koff)

Killing- and IFNγ-avidity ✓  SPR-KD and koff correlate with functional 
avidity when kon varies little

(73)

Human hTERT-spec 
CTL clone versus 7 
mimotopes

SPR (KD, kon, 
and koff)

CD107a, IFNγ, TNFα, and IL-2 
avidity

✓  SPR-KD correlates with poly-functionality 
until a supraphysiological TCR affinity 
thresholda

(81)

aCorrelation between TCR–pMHC affinity and T cell functionality is not linear with a functional decline for TCR–pMHC interactions taking place beyond the physiological affinity range 
at KD < 1 μM.
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HOw CAN we iDeNTiFY SeLF-TUMOR/
ANTiGeN-SPeCiFiC CD8 T CeLLS OF 
HiGH TCR–pMHC STRUCTURAL AviDiTY?

Molecular and Cellular TCR–pMHC 
Binding Measurements
Early TCR–pMHC binding analyses were typically performed by 
SPR, which allows for the simultaneous detection of molecular 
kinetics (kon and koff) and affinity (equilibrium dissociation con-
stant KD) of TCR–pMHC interactions in a single assay where one 
of the two molecules is attached to a sensor chip and the other 
one is flowing in soluble form (also defined as 3D interactions) 
(Figure 2) (110). Extensive studies revealed that natural human 
TCR–pMHC interactions were of relative weak affinities, with KD 
ranging from 500 to 1 μM, rapid off-rate and slow on-rates (46, 
111, 112). However, an inherent caveat of SPR analysis is that it 
requires the laborious and expensive production of soluble TCRs 
and ignores the contribution of the binding of the CD8 corecep-
tor and/or other molecules present in the vicinity of the TCR to 
the overall TCR–pMHC avidity.

Recently, novel technologies have emerged that enable the 
deduction of kon and koff kinetics directly at the interface between 
a living T cell and a surrogate APC, or between a T cell and a 
supported planar lipid bilayer (also defined as 2D interaction) 
(Figure 2) (113–115). Such 2D-kinetic analyses were shown to 
correlate with T cell activation, proliferation and cytokine secre-
tion (79), and calcium signaling (116) in both CD8 and CD4 
subsets (117). These studies also highlighted the cooperative 
role of CD8 coreceptor binding to the preexisting TCR–pMHC 
complex in a two-stage Lck-dependent manner (118, 119). 
Unexpectedly, 2D binding parameters are poorly correlating 
with 3D kinetic measurements, when compared side-by-side 

[reviewed in Ref. (120)]. Recent models of induced rebinding for 
TCR triggering, taking into account the TCR clustering effect and 
conformational changes occurring after initial pMHC encounter, 
now offer a reconciliation to these initial contradictory reports 
(121). Although 2D approaches allow for the measurements of 
TCR–pMHC binding parameters in a more physiological way 
than 3D SPR technology, both approaches should therefore be 
viewed as complementary. Importantly, 2D analyses require 
specialized equipment and time, precluding for the rapid and 
high-throughput screen of living antigen-specific T cells that 
could be useful for adoptive cell immunotherapy, and currently 
limiting their application to fundamental research (122, 123).

TCR–pMHC Binding and Kinetic 
Measurements by Multimeric pMHC 
Molecules
To better understand the biophysical parameters regulating T cell 
activation, numerous studies of TCR–pMHC binding parameters 
were conducted using soluble pMHC of well-defined valencies 
directly on living cells (122, 124–126). Despite these advances 
in TCR staining, attempts to use soluble pMHC multimers to 
precisely determine the TCR affinity/avidity provided ambigu-
ous results. While some reports showed a relationship between 
antitumor functional responses and the staining brightness 
(MFI) of multimeric pMHC attachment to the cell surface TCRs 
(Figure 2) (27, 83, 127, 128), others demonstrated a clear lack of 
correlation (129–131) (Table 3). Thus, the level of TCR–pMHC 
staining intensity (MFI) does not consistently correlate to 
the TCR–pMHC affinity/avidity, nor to the underlying T cell 
responsiveness.

Due to these discrepancies, multimeric association and dis-
sociation kinetic rates from the T cell surface were evaluated as 
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TABLe 3 | Characterization of natural tumor-specific CD8 T cell clones and lines.

Self-tumor/antigen-
specific model

TCR/pMHC affinity/
avidity assay 

In vitro functional assay In vivo 
functional 
assay

Correlation between TCR/pMHC 
affinity/avidity and T cell functionality

Reference

≈10 human gp100/Melan-A-
spec CTL clones/linesa

Multimers (MFI) Killing avidity ✓  Multimer-High T cells display higher 
functional avidity

(128)

10 human MAGE-A10 spec 
CTL linesa,b

Multimers (MFI) Killing avidity ✓  Multimer-High T cells display higher 
functional avidity

(27)

Mouse gp100/Tyr-spec CTL 
linesa,c

Multimers (%) Killing and IFNγ avidity Tumor size ×  No correlation between multimer-
parameters and functional avidity

(129)

8 human MAG-A10/Melan-A/
NY-ESO1 CTL clonesa,b

Multimers (MFI, 
off-rate)

Killing avidity ✓  Multimer off-rate (but not MFI) correlates 
with functional avidity

(132)

Human NY-ESO1-spec CTL 
clones/linesa,d

Multimers (MFI) Killing avidity ✓  Multimer MFI correlates with functional 
avidity

(127)

12 human Tyr-spec CTL 
clonesa,d

Multimers (MFI/%, 
off-rate)

Killing, IFNγ, TNFα, Il-2/5/13, 
and GM-CSF avidity

×  No correlation between multimer 
parameters and functional avidity

(131)

≈60 human NY-ESO1/Melan-
A-spec CTL clonesb

NTAmers (MFI, 
off-rate)

Killing avidity ✓  NTAmer off-rate correlates with 
functional avidity

(42)

≈100 human Melan-A-spec 
CTL clonesb

NTAmers (MFI, 
off-rate)

Killing avidity and Ca2+ flux ✓  NTAmer off-rate correlates with 
functional avidity in CD8 T cell subsets

(41)

aCTL clones/lines were derived through IVS.
bCTL clones/lines were derived from cancer patients.
cADD-transgenic mouse model (gp100 and tyrosinase represent self-Ag).
dCTL clones/lines were derived through allorestricted stimulation.
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potential read-outs for determining TCR–pMHC affinity/avid-
ity and correlates of T cell function. But again, several studies 
showed correlations between multimeric off-rates and antitumor 
T cell functions (62, 66, 132), whereas others failed to demon-
strate any in vitro functional or in vivo protective association (82, 
129, 131, 133) (Table 3). Major reasons for these inconsistencies 
include the kinetic bias generated by the multivalent nature of 
the pMHC complexes when compared to monomeric-based 
molecules, the impact of uncontrolled rebinding during dis-
sociation assays (134), as well as by the induction of signaling 
events through TCR–pMHC multimerization that can trigger 
cell death (122, 134).

improved Detection and isolation of 
Antigen-Specific CD8 T Cells by 
Reversible Multimers
Over the last decade, a major technological improvement was 
achieved with the development of reversible multimers (i.e., rea-
gents in which pMHC monomers can be disrupted from the mul-
timeric scaffold upon addition of a stimulus). By comparison with 
conventional multimers, reversible multimer staining allows for 
the isolation of practically “untouched” T cells, without inducing 
their TCR-mediated activation, phenotypic change, or activation-
induced cell death (122). Knabel and colleagues (135) developed 
the first class of reversible multimers called Streptamers (IBA, 
Goettingen, Germany). These molecules are made of fluorescent 
StrepTactin, a derivative of streptavidin, coupled to several pMHC 
monomers carrying a streptag, a linear peptide optimized to bind 
to StrepTactin (135). The molecule d-biotin binds StepTactin with 

higher affinity than streptag and is able to compete for the same 
binding site, disrupting the multimeric complex. Consequently, 
the addition of free d-biotin releases the fluorescent StrepTactin, 
breaking the multimers into non-activating pMHC monomers 
at the cell surface. Since MHC monomers do not stably bind to 
TCRs, they rapidly dissociate, allowing for the identification and 
isolation of antigen-specific CD8 T cells, while preserving their 
functional status, in contrast to conventional multimers (136).

Based on the same principle, pMHC monomers containing 
a desthiobiotin (DTB), a derivative of biotin that binds strepta-
vidin with lower affinity, were multimerized using fluorescent 
streptavidin and used for sorting untouched antigen-specific 
CD8 T cells (137). Sorting and cloning of Melan-A-specific CD8 
T cells using DTB-based multimers yielded over two times more 
clones than when using irreversible multimers, mainly because 
of avoidance of multimer induced apoptosis. Despite these tech-
nological advances, a major drawback of these reagents remained 
the lag time in the switch from multimeric to monomeric form 
and their weak molecular stability associated with their multim-
eric form, especially at high temperatures (122). More recently, 
Schmidt and colleagues (138) reported the third generation of 
reversible multimers, called NTAmers (TCMetrix), and made 
of His-tagged pMHC and fluorescent streptavidin carrying an 
engineered nitrilotriacetic acid (NTA) linker. NTAmer com-
plexes are highly stable even at elevated temperature and have 
the advantage of decaying very rapidly into monomers, within 
2–3 s upon addition of imidazole at doses that are non-toxic for 
T cells. Moreover, the benefit of using reversible NTAmers for 
sorting antigen-specific T cells without activation-induced cell 
death was further confirmed (138).
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Monomeric TCR–pMHC Off-Rate 
Measurements Specific for Non-Self viral 
Antigens
Major efforts have been made to develop technologies enabling the 
measurements of monomeric TCR–pMHC binding strength and 
kinetics directly at the surface of live T cells. Indeed, rapid inter-
rogation of these parameters may help discriminating CD8 T cells 
into high or low structural TCR–pMHC avidities (Figure 2) and 
thus permit the selection of T cells with optimal functional avidity 
(e.g., high T cell function and low autoreactivity). Thanks to the 
fluorescent labeling of individual pMHC monomers contained in 
the reversible multimeric complexes, it became possible to monitor 
and quantify monomeric dissociation of pMHC from the TCRs 
directly on living T cells. In 2013, Nauerth et  al. (139) reported 
a real-time microscopic-based method using reversible two-color 
Streptamers (IBA, Goettingen, Germany) to determine monomeric 
dissociation kinetics of non-self virus-specific TCRs on human and 
mouse T cells. The monomeric dissociation koff rates were found to 
correlate with in vitro functional avidity as well as with in vivo pro-
tection capacity. CMV-specific CD8 T cells expressing TCRs with 
slow dissociation rates (long half-lives) were functionally superior 
to those with rapid dissociation rates (short half-lives) (139). The 
authors concluded that monomeric pMHC–TCR dissociation 
kinetics represent a valuable parameter to identify the best T cells 
for adoptive cell transfer, and to evaluate the quality of existing or 
induced immune T cell responses (140). However, the Achilles 
heel of the Streptamer technology resides in the scaffold of the 
molecule itself. The significant lag time (about 60 s) required for the 
Streptamer to decay into monomeric pMHC molecules after addi-
tion of free d-biotin as well as the photobleaching effect associated 
with the microscopic assay prevent for the precise determination 
of rapid TCR–pMHC off-rates, which are typically found within 
the self/tumor-specific CD8 T cell repertoires of lower TCR affini-
ties. In turn, a great advantage is realized by the use of real-time 
fluorescence microscopy to enable simultaneous measurement of 
koff on several CD8 T cells, typically as many as displayed by the 
field of view, and is as such not limited to clonal T cell populations.

Monomeric TCR–pMHC Off-Rates 
Measurements Specific for Self/Tumor 
Antigens by NTAmers
We recently used a two-color version of the reversible NTAmer 
molecule, in which pMHC monomers are made with Cy5-labeled 
β2m and complexed with PE-streptavidin (122) (Figure 4). The 
rapid decay (2–3  s) of the NTAmer complex into its pMHC 
monomeric constituents made it possible to precisely analyze by 
flow cytometry the dissociation kinetics of a wide spectrum of 
TCR–pMHC affinities, with a special emphasis for self/tumor-
specific CD8 T cells (Figure 4). The reliability and accuracy of 
the NTAmer approach were validated by finding strong correla-
tions between NTAmer-based monomeric dissociation rates and 
those obtained by SPR measurements (42), when applied on our 
previously described panel of TCR-engineered A2/NY-ESO-
1157–165-specific T cells (65, 67). Using the NTAmer technology, 
we also successfully measured the monomeric TCR–pMHC dis-
sociation rates of a large series of natural A2/NY-ESO-1157–165- and 

Melan-AMART-1
26–35-specific CD8 T cell clones (n = 139) derived 

from various melanoma patients (42). Strikingly, the dissociation 
rates of tumor-specific CD8 T cells strongly correlated with their 
signaling and functional avidities, as determined by their capacity 
to mobilize calcium in response to TCR triggering and by their 
sensitivity to recognize and kill target cells (42) (Table 3). Thus, 
surface-based dissociation koff enabled the discrimination of 
tumor-specific CD8 T cells of low and high functional avidities.

In summary, the NTAmer offers the real-time quantification 
of dissociation kinetics on a wide range of TCR–pMHC affinities 
directly at the surface of living, primary CD8 T cells, thus provid-
ing rapid, easy, and direct measurements of the monomeric TCR–
pMHC dissociation rates within large numbers of tumor-specific 
CD8 T cell clones (41, 42) (Figure 4). Moreover, it is now possible 
to adequately evaluate the ex vivo impact of TCR–pMHC affinity/
avidity on the functionality and differentiation of antitumor T 
cell responses in well-defined clinical settings. Since the NTAmer 
approach requires the cloning and expansion of antigen-specific 
CD8 T cells before measuring their TCR–pMHC dissociation 
off-rates, current efforts are devoted in translating the NTAmer 
technology to the single cell level.

impact of the CD8 Coreceptor on  
TCR–pMHC Affinity/Avidity
If accumulating evidence pinpoints the pivotal role of TCR–pMHC 
affinity/avidity in T cell activation capacity, several other molecu-
lar and cellular parameters were also shown to greatly impact on 
T cell responsiveness upon TCR triggering. As such, it is largely 
accepted that the αβ heterodimeric CD8 coreceptor enhances 
CD8 T cell activation via two main effects: (i) by recruiting p56lck 
to the TCR/CD3 complex upon TCR engagement promoting 
cell signaling and (ii) by stabilizing the TCR–pMHC complexes 
through its weak but direct interaction with the α3 domain of 
pMHC class I molecule (40, 46, 118, 119, 141–143).

The biophysical contribution of CD8 attachment during 
TCR–pMHC triggering has been difficult to assess. Since the SPR 
technology does not allow the measurement of the dynamic effect 
of CD8 binding during TCR–pMHC interaction, its impact on 
TCR–pMHC kinetics were estimated at the surface of T cells with 
CD8-binding proficient or deficient pMHC tetramers (133, 143). 
Using a CD8 binding-deficient NTAmer variant, we recently per-
formed precise measurements of the impact of CD8 attachment 
during monomeric TCR–pMHC binding dissociation assays (42). 
CD8 coattachment was found to strengthen the TCR–pMHC 
binding interaction by a factor of 3–4 times, as anticipated by 
previous tetramer dissociation assays (133, 143). Interestingly, the 
CD8 stabilization factor on TCR–pMHC dissociation was inde-
pendent of the TCR–pMHC affinity, in contrast with the CD8 
dependence for T cell activation, which can be directly linked to 
TCR affinity (65, 87, 133), and allows tuning the sensitivity and 
specificity of T cell responses (144).

Finally, the expression levels of various other receptors/mol-
ecules, as for instance costimulatory and inhibitory receptors, 
cytokine receptors, or adhesion molecules, can also be important 
for the modulation of T cell activation through the fine tuning 
of either TCR-dependent signaling pathways, T cell activation 
thresholds and/or T cell–APC adhesion-strength. Interestingly, 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 4 | Schematic representation of the NTAmer-based monomeric dissociation assay. (A) CD8 T cells are stained at 4°C with multimeric NTAmers 
composed of streptavidin-PE (green)-NTA4 (gray) and peptide–MHC (brown) monomers containing His6-tag and Cy5-labeled β2m (red). (B) NTAmers are highly 
stable but upon addition of imidazole (100 mM), they rapidly decay in Cy5-labeled pMHC monomers and streptavidin-PE-NTA4 scaffolds. (C) Monomers 
subsequently dissociate from cell-associated TCRs (black) and CD8 (blue) according to the intrinsic TCR/CD8–pMHC dissociation rate (koff). (D) Representative DIC 
(differential interference contrast), PE, Cy5 and PE/Cy5 composite images acquired at the indicated time with a high-resolution microscopy flow cytometer (Amnis 
ImageStreamX Mark II) and illustrating the different stages (A–C) of the NTAmer dissociation assay. (e) Representative example of monomeric dissociation off-rates 
from a tumor-specific CD8 T cell clone following flow cytometry measurements by NTAmers. Imidazole is added after one minute baseline recording (left, white gap) 
and dissociation curves are followed over time within the Cy5 (monomers) and PE (NTA scaffold) channels. The kinetic module of FlowJo9 is used for geometric 
mean fluorescent intensity (gMFI) curve analysis (middle), while kinetic dissociation rates and half-lives are calculated with Prism (Graph Pad software Inc.). Adapted 
from Schmidt et al. (138) and Hebeisen et al. (42).
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while the expression level of these molecules can affect both 
the intensity and duration of T cell responses upon activation, 
we recently showed that some (e.g., PD-1 inhibitory recep-
tor and SHP-1/SHP-2 phosphatases) also correlated with the 
TCR–pMHC affinity/avidity (67). Altogether, these additional 
receptors/molecules are part of a tunable system that enables T 
cells to adapt their reactivity to different stimulatory conditions. 
We have just begun to understand how those are achieved (108).

DOeS THe TCR–pMHC STRUCTURAL 
AviDiTY PReDiCT CD8 T CeLL 
FUNCTiONAL eFFiCieNCY?

Relationship Between TCR–pMHC Binding 
Parameters and CD8 T Cell 
Responsiveness
Up to date, a debate remains regarding which parameter(s) of the 
TCR–pMHC interaction (e.g., koff and KD) could better predict 

T cell activation and function. While several reports showed 
that koff was the most significant factor contributing to T cell 
activation (69, 78, 145–149), others reported that KD was the 
preeminent correlate of T cell responsiveness (58, 74, 82, 84). 
Recent data suggested that these observations were in fact not 
in conflict which each other, but rather the manifestation of the 
association rate parameter (kon) (73, 150). Indeed, for TCRs with 
faster association rates to the pMHC (and thus high probability 
for TCR–pMHC rebinding), the affinity KD is the better predictor 
of T cell activation potency. Conversely, for slower association 
rates (and low rebinding probability), the off-rate remains the 
better correlate (73, 150). Nonetheless, in most cases the KD value 
is mainly driven by the koff.

Regardless of the type of parameter(s) used to quantify the 
TCR–pMHC binding interaction, data emanating from engi-
neered TCR-variant panels (Table  1) or altered peptide ligand 
models (Table 2) have provided strong evidence, in the context 
of self/tumor-specific immune responses, that the functional-
ity of CD8 T cells can be tailored by the TCR–pMHC affinity/
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avidity. As such, we and others demonstrate that within the range 
of physiological interactions (KD 100–1  μM), the TCR–pMHC 
affinity (as determined by SPR) strongly correlates with various 
T cell functional read-outs (59, 60, 65–67, 73, 76, 80, 81, 83, 84). 
These include T cell potency for target cell conjugation, phospho-
rylation of downstream molecules of the TCR-signaling complex, 
intracellular Ca2+ mobilization, lytic-granule polarization, target 
cell killing, cytokine production, cell proliferation, polyfunction-
ality, in vivo tumor infiltration, and protection/survival.

identifying Rare, High-Avidity Self/Tumor-
Specific CD8 T Cells in Melanoma Patients 
Using the Novel NTAmer Technology
It is important to mention that most studies described above 
are based on artificial models (e.g., using affinity-optimized 
TCR variants) and therefore rely on a wide TCR–pMHC affinity 
spectrum (from KD 100 μM to 1 pM) (Table 1). Since large-scale 
assessment of endogenous TCR–pMHC affinity/avidity reper-
toires has remained, until recently, technically challenging, only 
limited information is available on the overall impact and clinical 
relevance of TCR–pMHC affinity/avidity in the context of natural 
self/tumor antigen-specific CD8 T cell repertoires (Table  3). 
Specifically, the questions whether T cells of high TCR–pMHC 
affinity/avidity can be found in the endogenous tumor-specific 
repertoire of cancer patients and whether the TCR–pMHC 
structural avidity represents an important factor contributing to 
a robust antitumor T cell stimulation and activity remain open. 
To address them, novel tools had to be developed allowing the 
quantification of the endogenous TCR–pMHC affinity/avidity in 
relation to the tumor-specific T cell functions.

Recently, our group demonstrated that the NTAmer technol-
ogy could be used to precisely assess the TCR–pMHC structural 
avidity on living TCR-engineered and natural self/tumor- spe-
cific CD8 T cells (42) (Figure 4). Using large panels of Melan-
AMART-1

26–35- and NYESO-1157–165-specific CTL clones isolated from 
vaccinated melanoma patients, we showed that the NTAmer-
derived off-rates strongly correlated with the killing avidity of 
naturally occurring antitumor T cells (41, 42). Importantly, 
using this novel technology, we could quantify the potency of an 
immunotherapy intervention in melanoma patients. Indeed, we 
confirmed that the type of peptide used for vaccination of cancer 
patients profoundly influenced the TCR–pMHC structural 
avidity of tumor-specific T cells, which in turn correlated with 
T cell functions (41). Patients vaccinated repetitively with the 
natural Melan-AMART-1

26–35 decapeptide generated tumor-specific 
CD8 T cells with increased TCR–pMHC structural avidities as 
compared to vaccinations with the analog Melan-AMART-1

26–35  
A27L peptide, even if the latter binds more strongly and stably to 
MHC as compared to the natural peptide. Analog peptides with 
enhanced MHC binding are commonly used for cancer vaccines. 
However, vaccination with enhanced MHC binding has likely 
similar consequences as vaccination with high peptide doses, 
since both result in the activation and selection of qualitatively 
inferior T cells, likely due to their lower functional avidity (23, 
151). Indeed, we found that the overall functional properties of 
the tumor-specific CD8 T cells correlated with the biased T cell 

repertoire selection of vaccination with natural versus analog 
peptide (41, 152). Thus, vaccination with low peptide doses or 
peptides with weak/natural MHC binding favors an enrichment 
of T cell clonotypes with higher functional competence.

Consequently, the assessment of the TCR–pMHC structural 
avidity on living cells by NTAmers enabled to address which 
therapeutic vaccine protocol triggered the most potent, high-
avidity tumor-specific T cell responses within comparative 
experimental cohorts, providing precious insights into the 
choice of peptide to be employed for future cancer vaccines. 
Furthermore, we were able to evaluate the impact of TCR–pMHC 
affinity/avidity on T cell differentiation. Our data reveal that, 
compared to a high-affinity mimotope vaccine, the use of the 
natural  Melan-AMART-1

26–35  peptide could impact both the func-
tionality and the preferential differentiation of T cells bearing 
high structural avidity TCRs (41). Hence, we report the feasibility 
and usefulness of TCR–pMHC structural avidity assessment by 
NTAmers of naturally occurring polyclonal T cell responses, 
allowing the identification and selection of rare high-avidity 
cytotoxic T cells from patients for cancer therapy.

A New Look at Old Questions
Several other hypotheses can now be re-evaluated to further dis-
sect the impact of TCR–pMHC affinity/avidity on T cell (poly)
functionality, memory formation, survival and persistence. 
In terms of functionality, additional studies need to precisely 
appraise the impact of TCR–pMHC affinity/avidity on the ensu-
ing intracellular signals and effector activities, this in terms of 
both quantitative (ligand potency versus maximal activity) and 
qualitative (poly-functionality) aspects. Our current data indicate 
that the TCR–pMHC structural avidity correlates better with 
ligand potency (EC50) than with maximal activity using various 
functional readouts upon stimulation with titrated amounts of 
peptide [(41) own unpublished observations]. Of note, distinct 
T cell functions are triggered with different activation thresholds 
(Ca2+ flux < killing < cytokine-release < proliferation) (153–159), 
and could therefore be differentially affected by the TCR–pMHC 
affinity/avidity. Besides, more detailed studies are required to 
fully characterize the impact of TCR–pMHC affinity/avidity on 
the ability of CD8 T cells to develop distinct cytokine profiles 
(e.g., TH1 versus TH2) (131) or polyfunctional responses, a well-
established and important indicator of the ability of CD8 T cells 
to control viral infections, as suggested in various models (160).

Another important question is whether there is a distinct 
regulation of the repertoire selection, differentiation and persis-
tence of high- versus low-TCR–pMHC affinity/avidity antitumor 
CD8 T cells in vivo. For instance, numerous studies conducted 
in mouse models (70, 161–165) or ex vivo analysis of human T 
cell responses (166, 167) targeting pathogen-derived antigens 
demonstrate that the secondary repertoire is selectively enriched 
in high-affinity/avidity TCR-expressing T cells compared to the 
primary one. Such process of narrowing of the memory repertoire 
largely results from the loss of low-affinity/avidity TCR-bearing 
T cells during antigen-driven clonal expansion. Indeed, due 
to interclonal competition and restricted access to pathogen 
epitopes, low-avidity T cells are less likely to be primed and 
rapidly expanded than high-avidity ones (168–170). However, 
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high-affinity/avidity immunodominant clonotypes may also be 
preferentially driven toward functional impairment, when com-
pared to low-affinity/avidity ones, as a physiological consequence 
of T cell activation (171, 172).

T cell receptor–pMHC affinity/avidity could also represent a 
critical determinant for T cell susceptibility to tumor homing, 
as suggested in transgenic mouse models of adoptive transfer of 
high versus low-avidity tumor-specific CD8 T cells (173–177). 
When transferred into tumor-bearing mice, high-avidity CTLs 
were shown to be more potent than low avidity CTLs to infiltrate 
tumors (174, 175, 177), which could be partly attributed to the 
expression of integrins and lectins, such as CD62L and CD11a, 
on high avidity CTLs (174), and the recognition of tumor anti-
gens (32), emphasizing the role of antigen as homing molecule. 
High-avidity tumor-infiltrating T lymphocytes (TILs) expressed 
higher levels of molecules linked with their killing potential (e.g., 
granzyme B and perforin), associated with reduced levels of 
inhibitory proteins (e.g., LAG-3, PD-1, and NKG2A), than low 
avidity TILs (174). In contrast, low-avidity T cells were shown to 
upregulate members of the apoptosis pathway (e.g., Bim, FasL, 
and CD24) promoting their own cell death but also that of other 
tumor-specific T cells in the tumor microenvironment (173, 174). 
However, high-avidity CTLs were also more prone to tolerization 
mechanisms, and were preferentially tolerized by dendritic cells 
or regulatory T cells in the tumor microenvironment, while low-
avidity CTLs retained their effector functions (175–177).

CONCLUSive ReMARKS

Immunotherapy of cancer has made significant progress with the 
recent introduction of new therapeutic reagents, such as anti-
bodies specific for CTLA, PD-1, and PDL-1, so-called immune 
“checkpoints.” Yet, we still need robust techniques allowing the 
rapid identification and isolation of CD8 T cells of optimal avidity 
and functions against tumors. Ideally, these technologies should 
enable the efficient screening of live CD8 T cells derived from a 
tumor sample or the peripheral blood of cancer patients at the sin-
gle cell level. In that regard, binding strength analysis with novel 
fluorescent pMHC systems (e.g., NTAmers and Streptamers), 
combined with single cell microscopic or LCD camera screening 
may enable to retrieve cells with the desired dissociation rates, 
which could then be used for T cell amplification and/or TCR 
cloning. Among these selected clones, the ones that express 
TCRs of highest TCR–pMHC structural avidity could then be 
tested for other parameters that may define optimal antitumoral 
activity in vivo, including their differentiation status (e.g., naive, 
effector, and memory), surface activatory/inhibitory receptor 
profile (e.g., CD69, PD-1, and CTLA4), effector properties 

(e.g., target cell killing, cytokine and chemokine secretion, and 
poly-functionality), as well as their proliferation potential. The 
combination of these parameters should allow the rational selec-
tion for tumor-specific, high-avidity cytotoxic T cells that have 
maximal capacity to control tumor growth and eliminate tumor 
cells in vivo (Figure 1).

Furthermore, by developing NTAmers or related technologies 
for the quantification of TCR–pMHC affinity/avidity within 
polyclonal populations, it may become possible to characterize 
the impact of immune-based therapies (adoptive cell transfer and 
checkpoint blockade), as well as chemotherapy and radiotherapy, 
on the survival and persistence of anticancer T cells. The addi-
tion of the TCR–pMHC affinity/avidity read-out may offer a new 
“biometric,” by which the quality of the T cell response can be 
directly evaluated and graded in order to better characterize their 
impact on the efficacy of cancer-based therapies.

Finally, neoantigen-specific T cells are expected to express 
TCRs of higher affinity/avidity and to be safe to use to treat cancer 
patients (99), as T cells with such TCRs are not clonally deleted, 
are truly tumor specific and thus are unlikely to attack healthy 
cells (102). In the near future, more neoantigens will be identified 
(102), allowing for the isolation of neoantigen-specific T cells of 
optimal avidities using reversible multimer-based technologies. 
Neoantigen-specific TCR cloning may also give rise to libraries 
of potent transgenic T cells that can be used against common 
neoantigens shared by various cancers (e.g., BCR-ABL).

Understanding the correlates of immune protection and devel-
oping technologies and algorithms allowing selecting for the best 
(i.e., high avidity and high function) tumor-specific CD8 T cells 
will support the progress of T cell-based therapies against cancer.
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