12 research outputs found

    CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA

    Get PDF
    Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric α-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans

    KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation

    Get PDF
    SummaryCentromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres

    Nap1 regulates proper CENP-B binding to nucleosomes

    Get PDF
    CENP-B is a widely conserved centromeric satellite DNA-binding protein, which specifically binds to a 17-bp DNA sequence known as the CENP-B box. CENP-B functions positively in the de novo assembly of centromeric nucleosomes, containing the centromere-specific histone H3 variant, CENP-A. At the same time, CENP-B also prevents undesired assembly of the CENP-A nucleosome through heterochromatin formation on satellite DNA integrated into ectopic sites. Therefore, improper CENP-B binding to chromosomes could be harmful. However, no CENP-B eviction mechanism has yet been reported. In the present study, we found that human Nap1, an acidic histone chaperone, inhibited the non-specific binding of CENP-B to nucleosomes and apparently stimulated CENP-B binding to its cognate CENP-B box DNA in nucleosomes. In human cells, the CENP-B eviction activity of Nap1 was confirmed in model experiments, in which the CENP-B binding to a human artificial chromosome or an ectopic chromosome locus bearing CENP-B boxes was significantly decreased when Nap1 was tethered near the CENP-B box sequence. In contrast, another acidic histone chaperone, sNASP, did not promote CENP-B eviction in vitro and in vivo and did not stimulate specific CENP-B binding to CENP-A nucleosomes in vitro. We therefore propose a novel mechanism of CENP-B regulation by Nap1

    CENP-B Controls Centromere Formation Depending on the Chromatin Context

    Get PDF
    SummaryThe centromere is a chromatin region that serves as the spindle attachment point and directs accurate inheritance of eukaryotic chromosomes during cell divisions. However, the mechanism by which the centromere assembles and stabilizes at a specific genomic region is not clear. The de novo formation of a human/mammalian artificial chromosome (HAC/MAC) with a functional centromere assembly requires the presence of alpha-satellite DNA containing binding motifs for the centromeric CENP-B protein. We demonstrate here that de novo centromere assembly on HAC/MAC is dependent on CENP-B. In contrast, centromere formation is suppressed in cells expressing CENP-B when alpha-satellite DNA was integrated into a chromosomal site. Remarkably, on those integration sites CENP-B enhances histone H3-K9 trimethylation and DNA methylation, thereby stimulating heterochromatin formation. Thus, we propose that CENP-B plays a dual role in centromere formation, ensuring de novo formation on DNA lacking a functional centromere but preventing the formation of excess centromeres on chromosomes

    Combination of CENP-B box positive and negative synthetic alpha satellite repeats improves de novo human artificial chromosome formation

    Get PDF
    Human artificial chromosomes (HACs) can be formed de novo by introducing large (>30 kb) centromeric sequences consisting of highly repeated 171-bp alpha satellite (alphoid) DNA into HT1080 cells. However, only a subset of transformed cells successfully establishes HACs. CENP-A chromatin and heterochromatin assemble on the HACs and play crucial roles in chromosome segregation. The CENP-B protein, which binds a 17-bp motif (CENP-B box) in the alphoid DNA, functions in the formation of alternative CENP-A chromatin or heterochromatin states. A balance in the coordinated assembly of these chromatin states on the introduced alphoid DNA is important for HAC formation. To obtain information about the relationship between chromatin architecture and de novo HAC formation efficiency, we tested combinations of two 60-kb synthetic alphoid sequences containing either tetO or lacO plus a functional or mutated CENP-B box combined with a multiple fusion protein tethering system. The combination of mutated and wild-type CENP-B box alphoid repeats significantly enhanced HAC formation. Both CENP-A and HP1α were enriched in the wild-type alphoid DNA, whereas H3K27me3 was enriched on the mutant alphoid array. The presence or absence of CENP-B binding resulted in differences in the assembly of CENP-A chromatin on alphoid arrays and the formation of H3K9me3 or H3K27me3 heterochromatin

    Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing

    No full text
    The role of repetitive DNA sequences in pericentromeric regions with respect to kinetochore/heterochromatin structure and function is poorly understood. Here, we use a mouse erythroleukemia cell (MEL) system for studying how repetitive DNA assumes or is assembled into different chromatin structures. We show that human gamma-satellite DNA arrays allow a transcriptionally permissive chromatin conformation in an adjacent transgene and efficiently protect it from epigenetic silencing. These arrays contain CTCF and Ikaros binding sites. In MEL cells, this gamma-satellite DNA activity depends on binding of Ikaros proteins involved in differentiation along the hematopoietic pathway. Given our discovery of gamma-satellite DNA in pericentromeric regions of most human chromosomes and a dynamic chromatin state of gamma-satellite arrays in their natural location, we suggest that gamma-satellite DNA represents a unique region of the functional centromere with a possible role in preventing heterochromatin spreading beyond the pericentromeric region
    corecore