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SUMMARY

The centromere is a chromatin region that
serves as the spindle attachment point and
directs accurate inheritance of eukaryotic chro-
mosomes during cell divisions. However, the
mechanism by which the centromere assem-
bles and stabilizes at a specific genomic region
is not clear. The de novo formation of a human/
mammalian artificial chromosome (HAC/MAC)
with a functional centromere assembly requires
the presence of alpha-satellite DNA containing
binding motifs for the centromeric CENP-B pro-
tein. We demonstrate here that de novo centro-
mere assembly on HAC/MAC is dependent on
CENP-B. In contrast, centromere formation is
suppressed in cells expressing CENP-B when
alpha-satellite DNA was integrated into a chro-
mosomal site. Remarkably, on those integration
sites CENP-B enhances histone H3-K9 trime-
thylation and DNA methylation, thereby stimu-
lating heterochromatin formation. Thus, we
propose that CENP-B plays a dual role in cen-
tromere formation, ensuring de novo formation
on DNA lacking a functional centromere but
preventing the formation of excess centro-
meres on chromosomes.

INTRODUCTION

The centromere is an essential chromosomal domain that

is required for accurate inheritance of eukaryotic chromo-

somes during cell division. A number of protein compo-

nents of the centromere/kinetochore have been identified,

including CENP-A, -B, -C, -E, -F, -H, hMis6 (CENP-I),

hMis12, and others (Foltz et al., 2006; Izuta et al., 2006;

Okada et al., 2006), many of which are conserved between

yeast and humans (Chan et al., 2005). In particular,
Cell
CENP-A, a centromere-specific histone H3 variant which

is highly conserved among eukaryotes, is essential and re-

quired for assembly of the most of other centromere/kinet-

ochore components (Howman et al., 2000; Sullivan, 2001;

Goshima et al., 2003). Although CENP-A is required to

maintain centromere chromatin as an epigenetic marker,

the precise mechanism by which it promotes and stabi-

lizes at the metazoan centromere is not yet known.

CENP-B, highly conserved in humans and mice, binds

to the 17-bp CENP-B box through its amino-terminal

region and dimerizes through its carboxy-terminal region

(Earnshaw et al., 1987; Masumoto et al., 1989; Muro

et al., 1992; Pluta et al., 1992; Yoda et al., 1992). The

CENP-B box is conserved in centromeric human type I

a-satellite (alphoid) DNA and mouse minor satellite DNA,

even though these satellite sequences otherwise lack

sequence homology. Centromere/kinetochore structures

form at these two satellite loci (Kipling et al., 1995; Ando

et al., 2002; Spence et al., 2002; Guenatri et al., 2004),

and biochemical studies demonstrated that the CENP-A

associated kinetochore complex contains CENP-B (Su-

zuki et al., 2004; Foltz et al., 2006). This result suggests

that CENP-B forms a structural link between centromeric

DNA sequences and the kinetochore. Indeed, this possi-

bility is supported by previous studies showing that

type-I alphoid DNA forms de novo human artificial chro-

mosomes (HACs) with high efficiency in human HT1080

cells (Harrington et al., 1997; Ikeno et al., 1998; Ebersole

et al., 2000; Mejı́a et al., 2001; Grimes et al., 2002), and

that this reaction including the functional assembly of

CENP-A and kinetochore requires alphoid DNA and

CENP-B boxes (Ohzeki et al., 2002).

However, roles of CENP-B for centromere assembly

have been controversial. Studies in fission yeast show

that homologs of CENP-B play a role in forming pericen-

tromeric heterochromatin adjacent to kinetochores (Naka-

gawa et al., 2002). In human cells, one of the two centro-

meres on dicentric fusion chromosomes is frequently

inactivated even though both centromeres bind CENP-B

(Earnshaw et al., 1989; Sullivan and Schwartz, 1995;

Warburton et al., 1997). Moreover, in CENP-B knockout
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Figure 1. De Novo Artificial Chromosome Formation in Mouse Cells

(A) BAC vector containing synthetic a21-I alphoid sequences (60 kb) with wild-type or mutant CENP-B boxes was transfected into mouse embryonic

fibroblasts (MEFs) or MEFs lacking CENP-B. De novo artificial chromosome formation and centromeric chromatin assembly occurred on input

CENP-B boxes containing alphoid DNA when transformed in wild-type MEFs (see Table S1 for a more detailed explanation).

(B) FISH analysis of MEFs transfected with BACs carrying human alphoid DNA. Cell lines were as follows: CENP-B+/+, extrachromosomal BAC

(+/+ AC1); CENP-B+/+, integrated BAC (+/+ Int W1); CENP-B�/�, integrated BAC (�/� Int W1). FISH probes were for a21-I alphoid DNA (green) or

BAC DNA (red).

(C) FISH analysis of +/+ AC1 MEFs with a21-I alphoid probes (green) and mouse minor satellite probes (red) or major satellite probes (red), or BAC

probes (red) in combination with anti-CENPs immunofluorescence (green). DAPI (blue). The scale bars represent 2 mm.
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mouse cells, functional kinetochores are maintained with-

out CENP-B (Hudson et al., 1998; Kapoor et al., 1998;

Perez-Castro et al., 1998). CENP-B is not detected on

the Y chromosome centromere or in ‘‘neocentromeres,’’

rare functional centromeres in chromosomal arm regions.

The neocentromere has no significant centromeric DNA

sequence or CENP-B, but includes most other centro-

meric proteins including CENP-A (Choo, 2001).

The goal of this study was to investigate the intriguing

role of CENP-B in de novo centromere assembly. To this

end, BAC constructs carrying human alphoid DNA with

wild-type or mutant CENP-B boxes were transfected

into wild-type mouse embryo fibroblasts (MEFs) or

CENP-B-deficient MEFs with or without exogenous

CENP-B. The stability and initial/stable chromatin struc-

ture of the input alphoid DNA was then assessed using

immuno-FISH and chromatin immunoprecipitation (ChIP).

RESULTS

Artificial Chromosome Formation in Mouse Cells
The following experiments examine de novo assembly of

functional centromeric chromatin in wild-type and CENP-

B-deficient MEFs (see Figure S1A available online). The

chromatin assembly substrate for these experiments

was a BAC construct carrying a 60 kb fragment of syn-

thetic human alphoid DNA containing 32 tandem copies

of the 11-mer unit with wild-type (pWTR11.32Bsr) or mu-

tant CENP-B boxes (pMTR11.32Bsr) (Figure 1A). BAC

DNA constructs were transfected into MEFs, selected

for resistance to Blasticidin S (Bs) and transformants

were analyzed by FISH using probes for a21-I alphoid

DNA and BAC vector and by immunofluorescence using

antibodies to CENP-B and CENP-A. The results are

shown in Figures 1A–1C and Table S1. Alphoid DNA

BAC with wild-type CENP-B boxes formed stable centro-

meric minichromosomes at the rate of 5.2% (3/56 cell lines

in two independent experiments) as the predominant

fates. While this efficiency is lower than that observed

with the same construct in human HT1080 cells (�30%

of cell lines) (Ohzeki et al., 2002), artificial chromosomes

in MEFs have similar centromeric chromatin assembly.

Endogenous murine CENP-A, CENP-B, and CENP-C pro-

teins assembled on the human alphoid DNA, and mouse

centromeric minor satellite and pericentromeric major sat-

ellite DNA did not colocalize with the nascent centro-

meres, as indicated by immuno-FISH analysis (Figures

1C and S3A). This result indicates that de novo centro-

mere assembly occurs in wild-type MEFs on BAC con-

structs carrying human alphoid DNA. However, de novo

centromere and artificial chromosome assembly does

not occur in CENP-B-deficient MEFs (Figures 1A and

1B, Table S1, p < 0.05) or in wild-type MEFs carrying
Cell
alphoid DNA BAC with mutant CENP-B boxes (Figure 1A

and Table S1).

The mitotic stability of the mouse artificial chromo-

somes was examined in MEFs cultured under nonselec-

tive conditions (Figure 1D). This was done by performing

FISH analysis of wild-type MEFs carrying a nonintegrated

alphoid BAC with wild-type CENP-B boxes (+/+ AC1 cells)

in the presence and absence of Bs over approximately 50

population doublings. The results showed high stability of

the mouse artificial chromosome with a loss rate per cell

division (R) of 0.0025; this result confirms the conclusion

that functional centromeres form de novo on the trans-

fected BACs as stable artificial chromosomes.

Stable Assembly of Mouse CENP-A and CENP-B
on Human Alphoid DNA
Chromatin immunoprecipitation (ChIP) assay was used to

determine whether CENP-A nucleosomes assembled on

extrachromosomal (i.e., maintaining as an artificial chro-

mosome) or chromosomally-integrated human alphoid

DNA. The analysis was performed as shown in Figures

2A and 2B using competitive PCR. The multiplicity of the

alphoid BAC DNA was measured before starting the

analysis, as shown in Table 1. +/+ AC1 cells, carrying the

extrachromosomal alphoid DNA with wild-type CENP-B

boxes, and +/+ Int M1 cells, carrying chromosomally-

integrated alphoid DNA with mutant CENP-B boxes

(Figure S3B), were mixed in equal amounts, fixed, soni-

cated, and immunoprecipitated using antibody to CENP-

B, CENP-A or normal IgG. The relative recovery of alphoid

DNA with wild-type or mutant CENP-B-boxes was then

measured by competitive PCR. The results show that

the alphoid DNA with a wild-type CENP-B box was en-

riched 24-fold or 25-fold after immunoprecipitation with

anti-CENP-A or anti-CENP-B antibodies, respectively

(Figure 2Bb). This indicates that assembly of mouse

CENP-A chromatin occurs on human alphoid DNA with

wild-type CENP-B boxes but not on mutant CENP-B

boxes, as expected. Control experiments showed no

change in the ratio of mutant and wild-type alphoid DNA

when the samples were immunoprecipitated with normal

IgG (Figure 2Bb) or in CENP-B deficient MEFs (�/� Int

W1 cell) (Figures 1B and 2Bd). However, the wild-type

alphoid DNA fragment was enriched 2- to 4-fold in

CENP-B+/+ cells with chromosomally-integrated alphoid

DNA (+/+ Int W1 cell) (Figure 1B and Figure 2Bc). Thus,

CENP-A and CENP-B assembled with very low efficiency

on wild-type alphoid DNA integrated in a mouse chromo-

some, and with much higher efficiency on extrachromo-

somal alphoid DNA. The high level of CENP-A assembly

on extrachromosomal alphoid BAC with wild-type

CENP-B boxes (+/+ AC1 cell) and the low or no CENP-A

assembly on chromosomally-integrated alphoid DNA
(D) Mouse artificial chromosome stability. +/+ AC1 cells were cultured in selective (circle) or nonselective (square) medium. The proportion of > 70

metaphase cells containing artificial chromosomes was scored by FISH using a21-I alphoid probes and BAC probes and is shown in the histogram

as retention ratio (%). Artificial chromosome loss rate (R) was calculated using the following formula: Nn = N1 x (1-R)n. N1 and Nn are the rates for

artificial chromosome containing cells in these cell lines at the points of 1 and n generation(s), respectively.
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Figure 2. Competitive ChIP Analysis of Centromeric Chromatin in Human Alphoid DNA

(A) Schematic diagram of competitive ChIP analysis. pWTR11.32Bsr-transformed cells (+/+ AC1, +/+ Int W1 or �/� Int W1) were mixed with

pMTR11.32Bsr-transformed cells (+/+Int M1 or �/� Int M1).

(B) (a) Competitive PCR products from genomic DNA templates. +/+ AC1 and +/+ Int M1 cells were mixed at different ratios (from 1:8 to 8:1). Black

arrowhead indicates the 142-bp PCR fragment from pWTR11.32Bsr (CENP-B box). White arrowhead indicates the 111-bp PCR fragment from

pMTR11.32Bsr (mutant box). (b–d) Competitive PCR products from ChIP analysis with normal IgG (IgG), anti-CENP-A antibody (CA), and anti-

CENP-B antibody (CB). Relative enrichment of the CENP-B box alphoid versus mutant box alphoid is shown below the panels.

(C) ChIP and real-time PCR analyses were carried out for the introduced alphoid DNA, mouse minor satellite, or major satellite using anti-CENP-A

antibody and normal IgG (as a control). Recovery rate of immunoprecipitated DNA against the input DNA is shown in the histogram. Error bars

represent the SEM (n = 3).
(+/+ Int W1 cell or�/� Int W1 cell) were confirmed by ChIP

and real-time PCR analysis (Figure 2C) referenced by pos-

itive (centromeric minor satellite DNA) and negative (peri-

centromeric major satellite DNA) mouse endogenous con-

trols. These data establish that de novo assembly of

CENP-A chromatin occurs on extrachromosomal human

alphoid DNA in MEFs. However, this reaction requires

functional CENP-B and functional (wild-type) CENP-B

boxes in human alphoid DNA and is enhanced by an ex-

trachromosomal location of the heterologous centro-

meric DNA. Integration of the centromere competent al-

phoid DNA into an ectopic chromosomal site caused

fairly strong suppression in the assembly of CENP-A

chromatin.

Transient Assembly of CENP-A and CENP-B
in Wild-Type and CENP-B-Deficient MEFs
The assembly of CENP-A chromatin was examined at

early time points after DNA transfection using a sensitive

modified ChIP assay called transient ChIP. In this assay,

centromere assembly was examined on a chimeric BAC

construct containing 60 kb human alphoid DNA with

wild-type CENP-B boxes adjacent to 60 kb alphoid DNA

with mutant CENP-B boxes (Figure 3A). Here, the mutant
1290 Cell 131, 1287–1300, December 28, 2007 ª2007 Elsevie
alphoid DNA served as an internal negative control. The

competence of this chimeric alphoid BAC to form de

novo centromere assembly was initially tested in human

HT1080 cells showing high-efficiency artificial chromo-

some formation as a control. After transfection, cells

were cultured under nonselective conditions and compet-

itive ChIP analysis was carried out after 1–4 days. The

results showed that CENP-B assembled on alphoid DNA

with wild-type CENP-B boxes within 1 day after transfec-

tion, and that wild-type alphoid DNA was enriched 8- to

10-fold in CENP-B immunoprecipitates. CENP-A assem-

bly was also detectable on the third and fourth days after

transfection, with 2- to 3-fold enrichment of wild-type

alphoid DNA in CENP-A immunoprecipitates (Figure 3B).

Other experiments showed that the chimeric alphoid

BAC (mutant and wild-type CENP-B boxes) and the

wild-type alphoid BAC formed stable human artificial

chromosomes with similar efficiency in human HT1080

cells (data not shown).

Transient ChIP with the chimeric alphoid BAC was then

carried out in CENP-B+/+ and CENP-B�/� MEFs. The re-

sults showed that CENP-A and CENP-B assembled on

alphoid DNA with wild-type CENP-B boxes within 1 day

after transfection into CENP-B+/+ MEFs. Wild-type alphoid
r Inc.



Figure 3. Transient ChIP Assay of Centromeric Chromatin in Human Alphoid DNA in HT1080 Cells or MEFs

(A) BAC-based pWM11.64 vector with chimeric alphoid arrays containing CENP-B boxes and mutant boxes. (B) Competitive ChIP analysis, as in

Figure 2 was performed with pWM11.64-transfected HT1080 cells at indicated day(s) after transfection. pWM11.64-introduced MEF cells

(CENP-B+/+ or CENP-B�/�) cotransfected with or without a GFP-CENP-B expressing vector were analyzed by immunoblotting using antibodies

against CENP-B (BC1, Suzuki et al., 2004) and Actin (A4700, Sigma) (C) or by competitive ChIP 1 day after transfection (D). (E) Transient ChIP analysis

was performed at indicated day(s) after transfection (Figures 3B, 3D, and S4). The dashed line represents the threshold signal of 1-fold, above which

significant enrichment for CENP-A and CENP-B states was scored.
DNA was enriched 3.5-fold and 2.0-fold in CENP-A and

CENP-B immunoprecipitates, respectively. In contrast,

wild-type alphoid DNA was not enriched and CENP-B/A

assembly was not detected in CENP-B�/� cells up to

4 days after transfection (Figures 3D and 3E). The lower
Cell
enrichment of CENP-B assembly on alphoid DNA in

CENP-B+/+ MEFs may be due to one-eleventh lower level

of CENP-B expression in CENP-B+/+ MEFs compared to

that in HT1080 cells (data not shown). To try to complement

the defect in centromere assembly in CENP-B-deficient
131, 1287–1300, December 28, 2007 ª2007 Elsevier Inc. 1291



Figure 4. Binding of CENP-B, N-Terminal Fragment, to Alphoid DNA Is Required for Assembly of CENP-A Chromatin

(A) Schematics of CENP-B protein domains. Red lines indicate amino acid differences between human and mouse CENP-B. CENP-B box-binding

activity of the full-length CENP-B (Full), the N-terminal fragment (Nter), and the 16 aa truncation (D10–25).

(B) CENP-B�/� cells transiently expressing GFP-tagged CENP-B polypeptide (Full, D10–25 and Nter) were immunostained with antibodies against

GFP (green) and CENP-A (red), and DAPI (blue). The scale bars represent 5 mm.

(C and D) CENP-B�/� cells cotransfected with pWM11.64 and each CENP-B-expressing vectors (Full, D10–25, or Nter) were analyzed by immuno-

blotting using antibodies against CENP-B and Actin ([C] upper panel), or anti-GFP antibody ([D] upper panel), or by transient ChIP analysis ([C] lower

panel; [D] lower panel) using anti-GFP antibody instead of anti-CENP-B antibody, as in Figure 3.
cells, an expression plasmid encoding GFP (green fluores-

cent protein)-tagged CENP-B was cotransfected into

CENP-B�/� cells with the chimeric alphoid BAC. Immuno

detection confirmed that GFP-tagged CENP-B was ex-

pressed and localized to the centromere in CENP-B�/�

and CENP-B+/+ cells (Figures 3C and 4B). Overexpression

of GFP-tagged CENP-B increased the efficiency of CENP-

A and CENP-B assembly on wild-type alphoid DNA

dramatically. Wild-type alphoid DNA was enriched 16- to

30-fold in CENP-A and CENP-B immunoprecipitates

in CENP-B�/� and CENP-B+/+ MEFs, when the cells co-

expressed GFP-CENP-B (Figure 3D).

Binding of CENP-B to the CENP-B Box Promotes
Formation of CENP-A Chromatin
Previous in vitro studies demonstrated that a deletion

mutant of amino acids 10-25 of CENP-B failed to bind to

the CENP-B box (Figure 4A; Yoda et al., 1992). Here,

two DNA binding competent and one DNA binding-defec-

tive variants of CENP-B were coexpressed as GFP fusion

proteins in CENP-B-defective MEFs, and their ability to

support de novo centromere assembly on human alphoid

DNA was tested. The three CENP-B variants were full-

length CENP-B-GFP, N-ter CENP-B-GFP (including the

N-terminal 139 amino acids of CENP-B fused to GFP)

and D10–25 CENP-B-GFP. Fluorescence microscopy

showed that CENP-B-GFP and N-ter CENP-B-GFP
1292 Cell 131, 1287–1300, December 28, 2007 ª2007 Elsevie
colocalized with CENP-A at centromeres in CENP-B�/�

MEFs, while CENP-B (D10–25) localized to the whole nu-

cleus (Figure 4B). In addition, expression of full-length or

N-ter CENP-B supported assembly of CENP-A and

CENP-B on human alphoid DNA in CENP-B�/� MEFs,

while expression of CENP-B (D10–25) did not (Figures

4C and 4D). These results indicated that binding of

CENP-B to the CENP-B box is necessary for de novo

assembly of centromeric chromatin on human alphoid

DNA in MEFs. It should be noted that assembly of

CENP-A on human alphoid DNA is dependent on the pres-

ence of a functional N-terminal DNA binding domain of

CENP-B. This result suggests that the DNA binding

domain may play a direct role in recruiting CENP-A to

the centromeric satellite DNA and/or in de novo assembly

of CENP-A nucleosomes.

Methylation of CpGs in CENP-B Box Loses
the Binding of CENP-B and Associates
with the Reduction of CENP-A Level
In +/+ Int W1 MEFs, human alphoid DNA with wild-

type CENP-B boxes is stably integrated in mouse chromo-

somal DNA. Figure 2 shows that assembly of CENP-A and

CENP-B on alphoid DNA was suppressed in these cells.

Moreover, CENP-A, and CENP-B level on input alphoid

DNA decreased toward 4 days after transfection in mouse

cells, whereas CENP-B level was maintained and CENP-A
r Inc.



level increased after transfection in human HT1080 cells

(Figure 3E). Here, we investigated the possibility that epi-

genetic modifications of chromosomally integrated al-

phoid DNA, including the CENP-B boxes, might play

a role in suppressing de novo centromere assembly at

these sites. We confirmed that mouse and human

CENP-B have identical specificities for CENP-B box bind-

ing and dimer formation (Figure S5), which is consistent

with the level of amino acid sequence homology in the

N-terminal DNA binding domain and the C-terminal dimer-

ization domain of human and mouse CENP-B (Figure 4A).

The 9 bp core of the CENP-B box, which includes two

CpG sites, is also 100% conserved in human and mouse

DNA (Masumoto et al., 1989; Figure S2). In vitro studies

showed that methylation of the CpG sites in the CENP-B

box inhibits CENP-B binding (Tanaka et al., 2005a). Fur-

thermore, partial methylation, even hemimethylation of

one CpG of the CENP-B box, also inhibits CENP-B bind-

ing (Figure S5). Therefore, it seemed possible that methyl-

ation of alphoid DNA in MEFs could influence its ability to

form de novo centromeric chromatin.

Here, CpG methylation in chromosomal and nonchro-

mosomal alphoid DNA was examined with methylation-

sensitive restriction enzyme Aci I, which cuts within the

CENP-B box (Figure 5A). The results show that chromoso-

mally integrated alphoid DNA in +/+ Int W1 cells was

hypermethylated, but extrachromosomal alphoid DNA in

+/+ AC1 cells was not (Figure 5B). Interestingly, chromo-

somally-integrated alphoid DNA was hypomethylated in

CENP-B�/� MEFs (i.e., �/� Int W1 cells; Figure 5B). The

result was confirmed by immunoprecipitation of genomic

DNA with anti-5meC (Figure S6 and Table 1). These results

suggest that CpG methylation may negatively regulate

CENP-B binding to the CENP-B box and assembly of

CENP-A chromatin. However, neither CpG hypermethyla-

tion nor CENP-A assembly occurs on alphoid DNA in

CENP-B�/� cells.

The amount of histone H3K9 trimethylation (H3K9me3)

in alphoid DNA was also investigated using ChIP and

real-time PCR. These experiments revealed a high level

of H3K9me3 modification in chromosomally-integrated

alphoid DNA in +/+ Int W1 cells, or in extrachromosomal

alphoid DNA in +/+ AC1 cells, and a low level of

H3K9me3 modification in integrated alphoid DNA in �/�
Int W1 cells (Figure 5C). We also examined H3K9me3

modification in other independent cell lines and found

that hyper H3K9me3 modification occurred in chromoso-

mally integrated alphoid DNA in CENP-B+/+ MEFs. In con-

trast, this reaction did not occur in CENP-B�/� MEFs

(Figure S7B and Table 1). Thus, the presence of endoge-

nous CENP-B is required to induce active assembly of

CENP-A chromatin or a suppressed and inactive state at

ectopic sites. In contrast, in the absence of CENP-B,

human centromere competent satellite DNA assumes to

be neither in an active state (assembly of CENP-A and

CENP-B) nor in an inactive/suppressed chromatin state

(hyper CpG methylation and H3K9me3 hypermodification)

efficiently.
Cell
CENP-B Mediates Histone H3 Lysine 9
Trimetylation at the Ectopic Sites prior to DNA
Methylation in CENP-B Box
The CpG hypomethylation and lack of H3K9me3 modifi-

cation at chromosomal alphoid DNA in CENP-B�/�

MEFs led us to compare the effects of N-ter CENP-B-

GFP and full-length CENP-B-GFP on DNA and chromatin

modifications in these cells. CENP-A assembly occurred

at a low level in cells expressing both polypeptides

(Figures 5D and S7C and Table 1); H3K9me3 modification

occurred only in cells expressing full-length CENP-B-GFP

(Figures 5E and S7B and Table 1), and CpG methylation in

CENP-B box was not stimulated by expression of either

polypeptide at the same time (Figure 5F). However, CpG

methylation of whole alphoid DNA unit (including CENP-B

box) analyzed by immunoprecipitation with anti-5meC an-

tibody was increased by expression of full-length CENP-

B-GFP (Figure S6 and Table 1). These results indicate

that wild-type CENP-B may play a role in assembly or

spreading of heterochromatic H3K9me3 chromatin in

chromosomally-integrated alphoid DNA, and that the

DNA binding domain of CENP-B is not sufficient for this

function. We further investigated the effect of CENP-B

on chromosomally-integrated alphoid DNA at early time

points after transfection with CENP-B expression vector

under nonselective conditions. Similarly, only full-length

CENP-B promotes H3K9me3 hypermodification within

2-4 days after retroviral infection (Figures 6A and S8A,

lower panels). However, no enrichment of CENP-A was

detected within 4 days (Figures 6A and S8A, upper

panels). A low but reproducible enrichment of CENP-A

became detectable toward 12 days after retroviral infec-

tion (Figures S8B and 5D). These observations suggest

that CENP-A assembly pathway via the N-terminal do-

main of CENP-B was impaired initially in chromoso-

mally-integrated alphoid DNA. Importantly, full-length

CENP-B actively promotes H3K9me3 hypermodification.

We found that tagged Suv39h1, H3K9-specific methyl-

transferase, in MEFs was coimmunoprecipitated with

CENP-B in solubilized chromatin fraction (Figure 6B).

The result indicates that these proteins exist closely.

Indeed, loss of Suv39h1/h2 affects H3K9me3 modifica-

tion in chromosomally-integrated alphoid DNA. Similar

to the reduction of H3K9me3 level on minor and major

satellite DNA in Suv39h1/h2 double-null (Suv39h dn)

MEFs, the level of H3K9me3 modification in chromoso-

mally-integrated alphoid DNA was also decreased

(Figure 6C, left panel). Furthermore, the decrease in

H3K9me3 modification in the double mutant correlated

with CpG hypomethylation in integrated copies of al-

phoid DNA (Figure 6C, right panel). These results indicate

that Suv39h1/h2 are involved in H3K9me3 modification in

chromosomally-integrated alphoid DNA cooperating with

CENP-B and a major part of DNA CpG methylation

events is dependent on H3K9me3 modification. Thus

we propose that CpG hypermethylation in CENP-B

boxes occurs after modification of H3K9me3, and that

binding of CENP-B to CENP-B boxes may interfere
131, 1287–1300, December 28, 2007 ª2007 Elsevier Inc. 1293



Figure 5. Heterochromatic Modification State in Chromosomally Integrated Alphoid DNA

(A) Positions of methylation-sensitive AciI site within the CENP-B box on the alphoid 11-mer unit.

(B) Upper panel: southern analysis of CpG methylation in integrated human alphoid DNA. Genomic DNA prepared from MEF cell lines (+/+ AC1, +/+ Int

W1, and �/� Int W1), was digested with AciI after in vitro treatment with (me) or without CpG methylase (M. SssI), and hybridized with 32P-labeled

alphoid probe (left panel). Naked alphoid BAC DNA was used as a control. The input alphoid BAC DNA has a unique SpeI site. Lower panel: the in-

tensities of nonmethylated CENP-B boxes (equivalent to 2-mer 338bp, 4-mer 680bp, and 5-mer 847bp) relative to that of full-methylated DNA with

SssI methylase (equivalent to 23 kb; lanes, me) was determined using Image Gauge (Fuji FILM Science Lab 97).

(C) ChIP and real-time PCR analysis of human alphoid DNA, mouse minor satellite, or major satellite with anti-H3K9me3 antibody and normal IgG

(as a control). Error bars represent the SEM (n = 3). Cell lines derived from �/� Int W1 expressing GFP (�/� Int W1 GFP), GFP-tagged Nter CENP-B

(�/� Int W1 Nter), or GFP-tagged Full CENP-B (�/� Int W1 Full) were obtained under puromycin selection for 2 weeks after retroviral infection and

were analyzed in (D)–(F).

(D) Competitive ChIP analysis of centromeric chromatin on integrated human alphoid DNA as shown in Figure 2, using indicated antibodies. �/� Int

M1 cells were used as reference cells.

(E) ChIP and real-time PCR analysis for the integrated human alphoid DNA, mouse minor satellite, or major satellite using anti-H3K9me3 antibody and

control normal IgG. Error bars represent the SEM (n = 2).

(F) Methylation state of integrated human alphoid DNA.
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Table 1. CENPs and H3-K9me3 Assemblies on Introduced Alphoid BAC DNAs

Chromosomal

Event/

Cell Line

CENP-B

Allele in

MEF

Input Alphoid

DNA, CENP-B
Box (W) or

Mutant

Box (M)

CENPs Assembliesa

(Fold Enrichment or
Rate of Recovery [%])

H3K9me3
Assemblya

(Rate of

Recovery)

Methylation
of Alphoid

DNAb (Rate

of Recovery)

Multiplicity

of Input
Alphoid

DNA

(Copies)CENP-A CENP-B

MAC

+/+ AC1 +/+ W ++++ (24) ++++ (22) ++ (1.5%) ++c 17

Integration

+/+ Int W1 +/+ W + (2.0) + (4.5) +++ (1.8%) ++++ (7.4%) 52

+/+ Int W2 +/+ W + (1.2) + (1.4) ++++ (3.8%) nt 41

+/+ Int W3 +/+ W + (1.2) ± (1.1) ++++ (2.7%) nt 11

+/+ Int M1 +/+ M � � nt nt 35

�/� Int W1 �/� W � (1.0) � (1.0) + (0.45%) + (0.9%) 22

+ Nter + (1.6) +++ (11) + (0.46%)

+ Full + (1.2) ++ (7.2) ++++ (2.3%) ++ (2.7%)

�/� Int W2 �/� W � (1.0) � (1.0) + (0.84%) nt 5

+ Nter + (1.3) +++ (12) + (0.59%)

+ Full + (1.2) +++ (10) ++++ (2.3%)

�/� Int W3 �/� W � (1.0) � (1.0) + (0.64%) nt 20

+ Nter + (2.0) ++ (8.8) + (0.88%)

+ Full + (2.0) ++ (9.2) ++ (1.3%)

�/� Int M1 �/� M � � nt nt 20

Transformed cell mixture

WT / WTR +/+ W ± (0.024%) nt +++ (1.6%) ++++ (7.9%) nt

Suv39 dn / WTR +/+ W ++ (0.065%) nt + (0.58%) + (1.8%) nt

Suv39 dn / MTR +/+ M � (0.021%) nt ± (0.25%) ± (0.8%) nt

One point two fold enrichment measured by competitive PCR was statistically significant (p < 0.01) by a Student’s t test, relative to
values with control normal IgG.
a Relative level of CENP-A, CENP-B and H3K9me3 assembly was determined by ChIP analyses and shown;�, no assembly, ±; very

low; +, low; ++, medium; +++, high; ++++, very high.
b Relative level of methylated alphoid DNA was determined by methylated DNA immunoprecipitation (MeDIP) and shown; ±, very

low; +, low; ++, medium; ++++, very high.
c Relative level of methylated CENP-B box compared with +/+ Int W1 and�/� Int W1 cells was determined by the result of Figure 5B

(lower panel).
with CpG methylation in CENP-B boxes. Finally, once

satellite DNA assumes an inactive state (i.e., at sites

of chromosomal integration), this state can be main-

tained even in the absence of CENP-B by epigenetic

mechanisms involving H3K9me3 modification and CpG

methylation.

DISCUSSION

De Novo Centromere Assembly in Human Alphoid
DNA Requires CENP-B
Our understanding of the mechanism(s) of the assembly of

human centromeres comes largely from studies of artifi-

cial chromosome formation in human HT1080 cells. These

studies helped define the DNA sequences requirements
Cell
for forming de novo centromeres in human cells. Thus,

the requirement for human alphoid DNA and CENP-B

boxes is clear, but the mechanism for assembling centro-

meric proteins, including CENP-A, on alphoid DNA is

less well understood. The role of CENP-B is particularly in-

triguing; despite the conservation of CENP-B and its tar-

get binding sequence in human and mouse, several stud-

ies suggest that a functional centromere/kinetochore can

be maintained in the absence of CENP-B.

The present study demonstrates that human alphoid

DNA arrays with wild-type CENP-B boxes are sufficient

to direct assembly of CENP-A chromatin, de novo centro-

mere formation, and stable artificial chromosome propa-

gation in mouse CENP-B+/+ MEF cells. CENP-B is es-

sential for these events, since de novo assembly of a
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Figure 6. Binding of Full-Length of CENP-B Promotes H3K9me3 Hypermodification in Chromosomally Integrated Alphoid DNA

(A) Each GFP-tagged protein (GFP, Nter CENP-B, full-size CENP-B) was expressed using retroviral infection in �/� Int W1 cells. Two days after

infection, cells were harvested for ChIP analysis. Error bars represent the SEM (n = 2).

(B) Upper panel: GFP-tagged Suv39h1 (Suv39h1-GFP) and CENP-B were expressed using retroviral infection in �/� Int W1 cells. At 2 days after the

infection, the cells were immunostained with antibodies against GFP (green), CENP-B (red), and DAPI (blue). Lower panel: Solubilized chromatin frac-

tions (a majority is mononucleosome) prepared from �/� Int W1 cells expressing Suv39h1-GFP and CENP-B were immunoprecipitated with anti-

CENP-B (CB) antibody (BN1) or normal IgG (IgG) according to the previously described method (Suzuki et al., 2004). Immunoprecipitated samples

were analyzed by western blotting with anti-CENP-B or anti-GFP antibody. Lanes labeled Input contain the equivalent of 17% (left panel) or 5% (right

panel) of the input protein.
1296 Cell 131, 1287–1300, December 28, 2007 ª2007 Elsevier Inc.



centromere or CENP-A containing chromatin did not oc-

cur in CENP-B�/�MEFs and CENP-A chromatin assembly

was only rescued by expression of exogenous CENP-B.

This indicates that specific assembly of CENP-A chroma-

tin is mediated by and dependent on CENP-B. We con-

clude that the mechanism of de novo centromere assem-

bly as well as the components involved in this process are

highly conserved in human and mouse cells.

Effect of CENP-B Binding to Alphoid DNA
on De Novo CENP-A Assembly
The CENP-B box is the only homologous region in human

alphoid DNA and mouse minor satellite DNA. Data pre-

sented here suggest that human alphoid DNA and mouse

minor satellite DNA are interchangeable in promoting de

novo centromere chromatin assembly and centromere

function in MEFs. In contrast, nonalphoid synthetic repet-

itive DNA from pBR322 (AT content < 40%) with CENP-B

boxes lacks such function in human HT1080 cells (Ohzeki

et al., 2002). Centromere sequences tend to be AT-rich

(i.e., human alphoid DNA,�60% AT and mouse minor sat-

ellite DNA, �65% AT: Vafa et al., 1999; Sullivan et al.,

2001; Edwards and Murray, 2005). In vitro studies show

that binding of CENP-B to the CENP-B box induces

a DNA bend of 59 degrees, which in turn induces transla-

tional positioning of CENP-A nucleosomes on alphoid

DNA (Tanaka et al., 2005b). Present study shows that

binding of the CENP-B N-terminal DNA binding domain

to the CENP-B box is sufficient to promote assembly of

CENP-A chromatin on human alphoid DNA. Moreover,

our recent studies showed that both the length of alphoid

DNA arrays and the density of CENP-B boxes had a strong

effect on nucleation, spreading and/or maintenance of

CENP-A chromatin core, and formation of functional

kinetochores (Okamoto et al., 2007). Taken together, these

results suggest that binding of CENP-B to multiple adja-

cent CENP-B boxes arrayed in alphoid satellite DNA could

promote assembly of stable functional chromatin core

with CENP-A nucleosomes, at least in part through the

structure of AT-rich repetitive DNA. Alternatively, since

a direct interaction between CENP-B and CENP-A could

not be confirmed by yeast two-hybrid analyses (Suzuki

et al., 2004), additional as yet unidentified factor(s) may
Ce
promote de novo assembly of CENP-A chromatin and

functional centromeres in human alphoid DNA.

CENP-B Binding to CENP-B Boxes Modulates
H3K9me3 Hypermodification in Chromosomally
Integrated Alphoid DNA
Additional factors may also play a role in assembly or sta-

bility of CENP-A chromatin. For example, the low CpG fre-

quency reflecting the AT-richness, lack of CpG methyla-

tion and absence of proteins that bind methylated CpG

may contribute to the properties and in vivo behavior of

centromeric DNA sequences such as human alphoid

DNA and mouse minor satellite DNA (Klose and Bird,

2006). In many eukaryotes, the centromere is embedded

in heterochromatin which is enriched in HP1 and

H3K9me3. Interestingly, even partial CpG methylation in

the CENP-B box prevents CENP-B from binding to its

target sequence (Figure S5). This is consistent with the

observation that human alphoid DNA is hypermethylated

when integrated in the mouse chromosome (Figure 5B),

and that formation of CENP-A chromatin and CENP-B

binding are suppressed at the chromosomally-integrated

sites (Figures 2Bc and 2C). Previous reports also suggest

that the presence of H3K9me3 is antagonistic to formation

of CENP-A chromatin in alphoid DNA (Nakashima et al.,

2005; Okamoto et al., 2007). In this study, hyper

H3K9me3 modification occurred in alphoid DNA at chro-

mosomally-integrated sites in CENP-B+/+ MEFs. In con-

trast, this reaction did not occur in CENP-B�/� MEFs

(Figures 5C and S7B). Remarkably, H3K9me3 hypermodi-

fication in CENP-B�/�MEFs in chromosomally integrated

human alphoid DNA was restored by expression of full-

length but not by the N-terminal region of CENP-B (Fig-

ures 5E and S7B). At the same time, CpG methylation

did not increase in CENP-B boxes when full-length

CENP-B was expressed in CENP-B�/� MEFs (Figure 5F).

However, CpG methylation in whole alphoid DNA unit

indeed increased (Figure S6). This suggests that CENP-B

binding promotes both H3K9me3 hypermodification and

CpG methylation in chromosomally-integrated alphoid

DNA, without stimulating CpG methylation at its binding

site, initially. Several studies in fungi, plants and mammals

suggest that H3K9me3 hypermodification is dependent
(C) H3K9me3 level on the transfected alphoid DNA was reduced in the Suv39h1/h2 double-null cells. Alphoid BAC DNAs (pWTR11.32Bsr and

pMTR11.32Bsr) were transfected into Wild-type (WT) MEFs and Suv39h1/h2 double-null (Suv39h dn) MEFs, respectively. Transformed cell mixtures

were obtained under Bs selection for 6 weeks. pWTR11.32Bsr-transformed Wild-type cells (WT / WTR), pWTR11.32Bsr-transformed Suv39h dn cells

(Suv39h dn / WTR), or pMTR11.32Bsr-transformed Suv39h dn cells (Suv39h dn / MTR) were harvested for ChIP analysis using anti-H3-K9me3 an-

tibody (left panel) or for DNA-immunoprecipitation analysis using anti 5-meC antibody (right panel) referenced by highly methylated (CENP-B+/+ Int

W1 cells) and low methylated (CENP-B�/� Int W1 cells) alphoid DNA. The immunoprecipitated DNA was quantitated by real-time PCR. Error bars

represent the SEM (n = 3).

(D) (a) A model of de novo CENP-A chromatin assembly on transfected human alphoid DNA that is dependent on CENP-B binding. CENP-B binding to

CENP-B box (black circles) mediates de novo assembly of CENP-A chromatin on human alphoid DNA (white repetitive arrows) via the N-terminal DNA

binding domain of CENP-B. Alternatively, on chromatin bound alphoid DNA at chromosomal integration sites, CENP-B mediates H3K9me3 hyper-

modification via its central and C-terminal domains dominantly, possibly by recruiting chromatin remodeling and /or modifying complexes (Suv39h is

a possible candidate), which concomitantly stimulate CpG methylation in alphoid DNA competing CENP-B binding to CENP-B boxes. (b) A hypothet-

ical model of the natural centromere structure in contiguous AT-rich repetitive DNA. CENP-B may enhance at least three distinctive chromatin states;

CENP-A and CENP-B-rich kinetochore, CENP-B-bound H3K9me3 chromatin, and CpG hypermethylated and CENP-B-deficient H3K9me3 hetero-

chromatin. (See Discussion for more details.)
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on DNA methylation (Tamaru and Selker, 2001; Jackson

et al., 2002; Lehnertz et al., 2003). In mammals, DNA

methyltransferases can interact with Suv39h H3K9

methyltransferases (Lehnertz et al., 2003). However, in

Suv39h1/h2 double-null (Suv39h dn) MEFs, decreased

H3K9me3 correlated with decreases in CpG methylation

in pericentromeric major satellite DNA but not in centro-

meric minor satellite DNA (Lehnertz et al., 2003). We

observed the decreased levels of H3K9me3 and CpG

methylation in chromosomally integrated human alphoid

DNA in Suv39h dn MEFs (Figure 6C). Thus, several

mechanisms may regulate formation of heterochromatin

in mammalian cells, and one such mechanism is the

CENP-B-dependent pathway described above, which

operates on human and mouse centromeric satellite

DNA in MEFs.

Dual Roles of CENP-B in CENP-A Chromatin
Assembly and Trimethylation of H3K9
in Centromeric Satellite DNA
The above results with alphoid DNA at chromosomally-

integrated sites suggest that centromere inactivation

and heterochromatin assembly correlates with disassem-

bly of active centromere components. This suggestion is

consistent with the fact that one centromere in dicentric

mouse or human fusion-chromosomes is usually inactive,

despite the presence of centromeric satellite DNA and

CENP-B. Interestingly, while introduced naked (chroma-

tin-free) alphoid DNA binds the N-terminal region of

CENP-B and supports CENP-A chromatin assembly,

binding of the same region of CENP-B in chromoso-

mally-integrated (chromatin-bound) alphoid DNA fails to

support neither an initial assembly of CENP-A chromatin

nor H3K9me3 hypermodification (Figures 6A, 6Da, and

S8A). Besides, full-length CENP-B actively enhances

H3K9me3 modification in chromosomally-integrated al-

phoid DNA without stimulating an initial assembly of

CENP-A chromatin (Figures 6A, 6Da, and S8A). Although

we do not know yet whether CENP-B cooperates directly

or indirectly with Suv39h1/h2, tagged Suv39h1 was coim-

munoprecipitated with CENP-B in solubilized chromatin

fraction, indicating that these proteins exist closely

(Figure 6B). Thus, CENP-B does not simply induce

CENP-A assembly in alphoid DNA. We propose that

CENP-B may play dual antagonistic roles in modulating

chromatin structure in centromeric satellite DNA, alterna-

tively modulating assembly of CENP-A chromatin or

H3K9me3 hypermodification (Figure 6Da). We also sug-

gest that the former process is mediated by the N-terminal

DNA binding domain and the latter process is mediated by

other CENP-B domains.

Recent studies indicate that the distinctive clusters of

CENP-A chromatin and H3K9me3 chromatin are both

present in mouse and human centromeric satellite DNAs

(Guenatri et al., 2004; Martens et al., 2005; Nakashima

et al., 2005; Lam et al., 2006). We favor the view that

CENP-B nucleates CENP-A chromatin or enhances

H3K9me3 modification by recruiting chromatin remodel-
1298 Cell 131, 1287–1300, December 28, 2007 ª2007 Elsevier
ing and/or modifying complexes at each site of centro-

mere region, thereby allowing a CENP-A chromatin clus-

ter or a H3K9me3 cluster to spread across the entire

centromere region (Figure 6Db). However, for assembly

of the functional centromere, CENP-A chromatin and

H3K9me3 chromatin clusters should coexist and be

maintained in centromeric satellite DNA by an epigenetic

mechanism. Indeed, CENP-A chromatin and H3K9me3

chromatin appear to be in balance in mouse artificial

chromosomes carrying human alphoid DNA (Figures

2Bb, 2C, 5C and Table 1). In contrast, when human al-

phoid DNA was at chromosomally-integrated sites, for-

mation of H3K9me3 chromatin was dominant, and de

novo centromere assembly was suppressed. In mouse

cells, the efficiency of CENP-B binding to alphoid

DNA was gradually decreased during 4 days after trans-

fection, whereas the CENP-B binding maintained stable

in human HT1080 cells highly competent for artificial

chromosome formation (Figure 3E). Although reduction

of the H3K9me3 level in Suv39h dn cells did not induce

a complete centromere activation, the level of CENP-A

assembly was 2.7-fold increased at chromosomally-

integrated sites (Figure S9 and Table 1). Thus, the balance

between these antagonistic substrates, CENP-A and het-

erochromatin including H3K9me3, appears to be critical

in determining the functional centromere structure on al-

phoid DNA. We propose that CENP-B acts as AT-rich sat-

ellite DNA specific modulator (still associating with a low

CpG motives), which dynamically promotes formation of

the CENP-A chromatin cluster or spreading of the sup-

pressive heterochromatin on the same satellite DNA.

This dynamic chromatin assembly balance between the

antagonistic chromatin substrates may enhance not

only de novo centromere/artificial chromosome formation

but also inactivation of one of centromeres in dicentric

fusion chromosomes.

The results presented here agree well with the idea that

once established, CENP-A or H3K9me3 chromatin and

CpG hypermethylation can be maintained by an epige-

netic mechanism in the absence of CENP-B (Figures 2C

and 5C). However, the mechanisms that modulate hetero-

chromatin assembly and spreading in mammalian satellite

DNA are still very poorly understood. Further studies are

needed, especially to better understand the role of

CENP-A and CENP-B in these processes. Undoubtedly,

this knowledge will be indispensable for development of

next-generation human artificial chromosomes and mam-

malian vectors for gene therapy.

EXPERIMENTAL PROCEDURES

Cell Lines

Mouse embryo fibroblasts (MEFs) from litter mates homozygous for

wild-type CENP-B (E18) or homozygous for a CENP-B deletion

(CENP-B�/�, E8) were immortalized with SV40 large T antigen (Kapoor

et al., 1998). CENP-B+/+, CENP-B�/�, and HT1080 human fibrosar-

coma cells were cultured in DME supplemented with 10% (vol/vol)

FCS, penicillin, streptomycin, and L-glutamine at 37�C in a 5% CO2

incubator. Cell culture of Wild-type (WT) MEFs and Suv39h1/h2
Inc.



double-null (Suv39h dn) MEFs was carried out as described (Martens

et al., 2005).

Transfection

Purified BAC DNA using a QIAGEN column was transfected into 50%

confluent CENP-B+/+ or CENP-B�/� cells in 6 well plates with lipofect-

amine (Invtrogen). Stable transformants were selected with 6 mg/ml

blasticidin S (Bs) (Kaken Seiyasu).

ChIP and Competitive PCR/Real-Time PCR

ChIP was performed as previously described (Nakashima et al., 2005).

Cells (3–5 3 105) were fixed in 0.25% formaldehyde at 22�C for 5 min.

After sonication, soluble chromatin (as input) was recovered by centri-

fugation and immunoprecipitated using 2-10 mg antibody. Antibodies

used were anti-mouse CENP-A (8C5), anti-CENP-B (5E6C1), anti-

GFP (Roche), and anti-trimethylated H3 lys9 (Upstate). Purified DNA

of the immunoprecipitates and of input DNA was quantified by com-

petitive PCR (Ohzeki et al., 2002) or real-time PCR (Nakashima et al.,

2005) using the primer specific for synthetic alphoid, BAC vector,

minor satellite, major satellite, rDNA, or b-tubulin (see Table S2).

Retroviral Infection of �/� Int W1 MEFs Cells

Recombinant retrovirus was produced by transfecting retroviral con-

structs (pMX-puro GFP, pMX-puro GFP Nter, or pMX-puro GFP Full)

into the virus packaging cell line Plat-E (Morita et al., 2000) using

FuGene6 Reagent (Roche). The supernatant was incubated with

MEF cells in presence of 5 mg/ml polybrene and plated on 6 well plates.

Stable transformants were selected with 5 mg/ml puromycin.

Standard procedures, including descriptions of Construction of

BACs and plasmids, Cytological assays, DNA multiplicity by real-

time PCR, Methylated DNA immunoprecipitation (MeDIP), Transient

DNA transfection, Names of Stable transformants are described in

Supplementary Experimental Procedures.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

two tables, and nine figures and can be found with this article online

at http://www.cell.com/cgi/content/full/131/7/1287/DC1/.
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