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ABSTRACT: Since their description in the late 1990s, Human Artificial
Chromosomes (HACs) bearing functional kinetochores have been considered
as promising systems for gene delivery and expression. More recently a HAC
assembled from a synthetic alphoid DNA array has been exploited in studies of
centromeric chromatin and in assessing the impact of different epigenetic
modifications on kinetochore structure and function in human cells. This HAC
was termed the alphoidtetO-HAC, as the synthetic monomers each contained a
tetO sequence in place of the CENP-B box that can be targeted specifically
with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified,
revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for
centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are
expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the
phenotypes arising from stable gene expression can be reversed when cells are “cured” of the HAC by inactivating its
kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of
HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment
strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for
studying human chromosome transactions and structure as well as for genome and cancer studies.

KEYWORDS: human artificial chromosome, HAC, gene delivery vector, kinetochore, chromosome instability, CIN

Since their first description in the late 1990s, Human
Artificial Chromosomes (HACs) carrying a functional

kinetochore have been considered as a promising system for
gene delivery and expression with the potential to overcome
several problems caused by the use of viral-based gene transfer
systems.1−8 HACs avoid the limited cloning capacity, lack of
copy number control, and insertional mutagenesis during
integration into host chromosomes that have hampered the use
of viral vectors. Although it is not as routine as transfection or
infection with a virus, HACs along with the genetic loci can be
transferred from one cell to another in the laboratory. The
ability of HACs to carry entire genomic loci with all regulatory
elements allows them to faithfully mimic the normal pattern of
natural gene expression. Moreover, not only single genes but
also groups of genes encoding complex pathways can be
carried on a single HAC.
Both top-down and the bottom-up approaches have been

used to construct HACs. Top-down approaches are based on
telomere-associated chromosome fragmentation in the homol-
ogous recombination-proficient chicken DT40 cell line. Using
top-down approaches, linear minichromosomes ranging in size
from 0.5 Mb to 10 Mb have been generated so far. Such

derivatives of natural human chromosomes have been
produced from chromosome X,9,10 chromosome Y,11−13

chromosome 22,14 chromosome 21,3,15 and chromosome
14.16 These minichromosomes retain a natural centromere
and are mitotically stable in human cells during cell
propagation3,7,8 until their size falls below ∼300 Kb.11,13

This review focus on the bottom-up approaches for de novo
HAC construction. More precisely, we will focus on a de novo
constructed synthetic HAC generated from an alphoid DNA
array assembled from a 348 bp human centromeric repeat, and
describe the multiple applications of this HAC for genome and
cancer studies.

1. BOTTOM UP OR DE NOVO CONSTRUCTION OF
HUMAN ARTIFICIAL CHROMOSOMES

1.1. Construction of Human Artificial Chromosomes
from Natural Alphoid DNA. In the late nineties two groups
independently reconstituted functional artificial human chro-
mosomes. The Willard and Masumoto laboratories and their
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respective coauthors were the first to show that alphoid DNA,
the primary DNA satellite repeats in human centromeres, can
“seed” formation of a functional kinetochore when transfected
into the human fibrosarcoma HT1080 cell line.17,18 Sub-
sequently, other groups have confirmed this observation and
reported that natural higher-order repeat (HOR) arrays
composed of 171 bp alpha-satellite monomer units containing
CENP-B boxes, 17 bp binding sites for the kinetochore protein
CENP-B,19 that are tandemly arranged in a directional head-
to-tail fashion are sufficient for de novo HAC formation.20

These HACs ranged in size from 1 Mb to 10 Mb due to
amplification of the input alphoid DNA during HAC
establishment and were stably maintained as single copy
episomes in the nucleus of transfected cells. HACs engineered
by the bottom-up approach can be circular or linear if
telomeric sequences are inserted. The resulting HACs are
equally stable as both possess a functional centromere and
therefore can autonomously replicate and segre-
gate.1,2,4−8,21−30

The first HACs were constructed from 50 to 100 kb alphoid
DNA fragments identified in existing Yeast Artificial
Chromosome (YAC) or Bacterial Artificial Chromosome
(BAC) libraries. Using ligation-based reconstruction methods

with alphoid DNA repetitive units, several studies proved that
alphoid DNA bearing CENP-B boxes were required for de novo
HAC formation.21,29,31 However, because the complete DNA
sequence of these fragments was unknown, definitive studies of
the structural requirements for de novo kinetochore formation
were not feasible.

1.2. Construction of Human Artificial Chromosomes
from Alphoid Synthetic Repeats. To address this problem,
our group developed a method, RCA-TAR, to construct
synthetic alphoid DNA arrays with the possibility to
manipulate alphoid DNA arrays to introduce precisely defined
DNA sequence variation.32,33 RCA-TAR involves two steps:
rolling circle amplification (RCA) of alphoid DNA oligomers
that may be as small as a dimer (348 bp) and subsequent
assembly of the amplified fragments (1−3 kb) up to 140 kb by
transformation-associated recombination (TAR) in yeast.34−38

Because the alphoid DNA repeat sequence can be altered
before the amplification step, it is possible with this approach
to introduce mutations, including defined deletions, insert
recognition sites for DNA-binding proteins, or otherwise vary
the alphoid DNA sequence and/or structure. Using the RCA-
TAR method, synthetic alphoid DNA arrays from 50 kb to 140
kb have been generated from single alphoid repeats and used

Figure 1. alphoidtetO-HAC formation and detection. (a) de novo generation of the human artificial chromosome (HAC) via bottom−up approach
using a synthetic alphoid DNA dimer. The first step includes amplification of the dimer by rolling circle amplification (RCA) up to 1−3 kb in size
fragments. One monomer of the dimer derived from the chromosome 17 alphoid-type I 16-mer unit and contains a CENP-B box. The second
monomer is a wholly synthetic sequence derived from alphoid DNA consensus, with sequences corresponding to the CENP-B box replaced by a 42
bp tetO motif. The second step includes assembly of the RCA-amplified fragments in yeast cells on the vector containing alphoid-specific hooks by
transformation-associated recombination (TAR). End-to-end recombination of RCA-generated alphoid DNA fragments followed by interaction of
the recombined fragments with the vector hooks results in the rescue of approximately a 50 kb synthetic alphoid array as a circular molecule in
yeast. At the third step, HAC was formed in human cells by 50 kb transfected DNA multimerization up to 1.1 Mb in size. (b) Immunofluorescence
on a metaphase chromosome spread of a cell containing the alphoidtetO-HAC in human HT1080 cells. The HAC was stained with the centromeric
CENP-C protein (red) and tetR-EYFP (green) to detect the HAC. (c) FISH analysis of the alphoidtetO-HAC in hamster CHO cells. FISH analysis
was performed using the PNA labeled probe for tetO sequences (green).

ACS Synthetic Biology Review

DOI: 10.1021/acssynbio.8b00230
ACS Synth. Biol. 2018, 7, 1974−1989

1975

http://dx.doi.org/10.1021/acssynbio.8b00230


for HAC formation.32 This accomplishment has made it
possible to begin to analyze the genomic and proteomic
requirements for de novo kinetochore formation and
maintenance.
1.3. Construction of Synthetic Human Artificial

Chromosome with a Conditional Centromere. A
collaborative effort of three laboratories led to the generation
of a circular HAC with a conditional centromere using the
RCA-TAR technology (Figure 1). This HAC has been
instrumental in resolving the role for various chromatin
structures on kinetochore function.39−42 The HAC includes
approximately 6000 copies of the tetracycline operator (tetO)
sequence incorporated into a synthetic monomer synthesized
according to the Choo consensus sequence43 and paired with a
natural monomer from chromosome 17 containing a CENP-B
box to make the 348 bp dimer unit.42 Ten copies of this dimer
cloned into pBluescript were amplified by RCA-TAR up to 50
kb and used as input DNA for HAC formation after
transfection into human HT1080 cells. This novel synthetic
HAC was termed the alphoidtetO-HAC, as the synthetic
monomers each contained a tetO sequence in place of the
CENP-B box. Because tetO is bound with high affinity and
specificity by the tet repressor (tetR), the final 1.1 Mb alphoid
array containing tetO sequences in this HAC44 can be targeted
specifically with tetR-fusion proteins.42 Importantly, the
structure and functional domains of this HAC remain
unchanged after several rounds of transfer into different host
mammalian cells by microcell-mediated cell fusion.45 3D-
CLEM confirmed that this HAC contains typical chromosome
compartments (centromere, kinetochore, scaffold, and periph-
ery).46 Knowledge of the alphoidtetO-HAC structure44 allowed
us to monitor HAC integrity during different manipulations or
its transfer from one cell line to another.
The synthetic HAC allows the targeted manipulation of

chromatin within a single functional centromere without
affecting the endogenous chromosomes of the host cell. This
technology (termed epigenetic engineering) offers a unique
approach to dissect the epigenetic factors that control
centromere and kinetochore assembly and function to allow
faithful chromosome segregation39,40,47−51 reviewed in refs
47,49, and 52. As described below, a modified version of the
alphoidtetO-HAC with a “landing pad” for the insertion of
genomic copies of genes is also useful as a full-length gene
delivery vector for gene functional analyses.45,53−60

2. HUMAN ARTIFICIAL CHROMOSOME WITH
REGULATED CENTROMERE FOR GENE
FUNCTIONAL ANALYSES
2.1. Conversion of AlphoidtetO-HAC into a Gene

Delivery Vector. The ability of HACs to carry entire genomic
loci with all regulatory elements should in principle allow them
to faithfully mimic normal patterns of natural gene expression
for inserted genomic loci. Several laboratories have constructed
HACs with a single loxP gene loading site3,15,61−64 that was
used for gene insertion and expression (reviewed in refs 1,2,
and 4−8). However, the alphoidtetO-HAC with its conditional
kinetochore allows unique controls for gene function analysis.
Since its kinetochore can be specifically inactivated, this HAC
provides the possibility to compare the phenotypes in target
stable human human cell lines with and without a cloned
genetic locus. In cells carrying the HAC, the consequences of
expression or silencing of the cloned locus can be assessed.
Then, by targeting the tetO sequences using chromatin

modifiers that lead to centromere inactivation, populations
are “cured” of the HAC as a result of loss during growth in
culture. The return to the original basal phenotype in the same
clone of cells is a rigorous control against unsuspected effects
caused by the presence of the HAC, and thereby allows more
confident interpretation of gene complementation and
function studies.
To adopt the existing alphoidtetO-HAC for gene delivery and

expression studies, the HAC was transferred from human
HT1080 cells to recipient chicken DT40 cells by two rounds of
Microcell-Mediated Chromosome Transfer (MMCT)65 using
CHO hamster cells as an intermediate host. A Lox-P-5′ HPRT-
Hyg-TK cassette was targeted into the HAC by homologous
recombination in DT40 cells. Clones with a single lox-P site
were identified and the retrofitted HAC was transferred back
to CHO cells.45 After all manipulations, the alphoidtetO-HAC
with a single loxP site was mitotically stable in CHO cells.
Cassette-associated transgenes, Hyg and TK, are stably
expressed in CHO cells.45 In those cells, a gene of interest
can be easily inserted into the loxP site of the HAC by Cre-
mediated recombination. Because CHO cells form microcells
at high frequency in response to Colcemid,65 the HAC can be
easily moved from donor CHO cells into different recipient
human or mouse cell lines via MMCT for complementation
and function analysis.53,54,66 We also transferred the
alphoidtetO-HAC containing an EGFP transgene inserted into
the loxP site into mouse ES cells and assessed whether the
presence of this extra chromosome affects their pluripotent
properties. The alphoidtetO-HAC-bearing ES cells were
indistinguishable from their wild-type counterparts: they
retained self-renewal potential and full capacity for multi-
lineage differentiation during mouse development, and the
HAC itself was mitotically and transcriptionally stable during
this process60 (Figure 2). Our data provided the first example

of a fully synthetic chromosome behaving like a normal
chromosome in cells of living animals, thereby opening new
opportunities for functional genetic studies in laboratory
animals as well as stem cell-based regenerative medicine.

2.2. Re-engineering the alphoidtetO-HAC Vector To
Allow a Unique Control for Gene Phenotypes by a

Figure 2. AlphoidtetO-HAC detection in vivo. (a) Metaphase spread
indicating intact alphoidtetO-HAC (white arrow) in mouse ES cells.
(b) Chimeric mouse embryo showing expression of the EGFP
transgene inserted into the single loxP gene loading site of the HAC.
(C) The adult chimeric mouse carrying the HAC in the genome.
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Simple Doxycycline Manipulation. As described above, the
alphoidtetO-HAC can be easily eliminated from cells by
inactivation of the HAC kinetochore via binding of chromatin
modifiers, that induce either hypertranscription (tTS) or
heterochromatinization (tTA) of its centromeric sequences42

(see also section 3.2). Induction of HAC loss provides the
possibility to control for phenotypes induced by the presence
of the HAC in a cell population and control more rigorously
for the effects of genetic loci loaded onto the HAC. However,
such inactivation of the HAC kinetochore initially required
transfection of cells by lipofectamine or retroviral vectors in
order to introduce exogenous DNAs expressing the tTS or
tTA. Such transfections have the potential to cause insertional
mutagenesis.
We therefore re-engineered the alphoidtetO-HAC vector to

allow centromere inactivation without transfection of exoge-
nous chromatin modulators. In this modified HAC vector, a
cassette expressing the tTS was inserted into the loxP gene-
loading site along with the genetic locus of interest. In the
absence of doxycycline, expression of the tTS generates a self-
regulating fluctuating heterochromatin state on the alphoidtetO-
HAC. When the tTS binds to the tetO array, it induces
heterochromatin formation that both inactivates the centro-
mere and also inactivates expression of the tTS gene itself. The
net result is a fast and strong silencing of the genetic locus
being tested on the HAC without a significant effect on HAC
segregation (the tTS silences itself before the heterochromatin
is “deep” enough to inactivate the centromere). Silencing of
the test transgene is reversible as its expression can be readily
recovered by adding doxycycline, which blocks binding of the
tTS to the tetO array.55 However, this system does not allow
us to return cells to their “ground state” by curing them of the
HAC. We therefore designed a second re-engineered
alphoidtetO-HAC vector that allows fast and highly efficient
inactivation of the HAC kinetochore. In this vector, a
tTA(VP64) cassette carrying four tandem repeats of the
VP16 domain is inserted into the single loxP gene-loading site
along with the genetic locus of interest (Figure 3a). In medium
plus doxycycline, tTA(VP64) binding to the alphoidtetO array is
blocked. Thus, the genetic locus being tested is expressed
under control of its own promoter and the HAC is stable
(Figure 3b). In the absence of doxycycline, tTA(VP64) binds
to the alphoidtetO array inducing a burst of transcription that
leads to rapid disruption of kinetochore function followed by
the HAC loss (Figure 3c,d).56 These modified alphoidtetO-
HAC-based vectors containing a single copy of the tTS or
tTA(VP64) represent powerful tools for gene function studies
because they allow us to control gene activity or to cure cells of
the HAC by simple addition or removal of doxycycline.
2.3. Pericentromeric Gamma-Satellite DNA and tDNA

Prevent Heterochromatin Spreading and Protect Gene
Expression from AlphoidtetO-HAC. In the alphoidtetO-HAC
vector, insertion of a gene-loading site into the alphoidtetO-
array45 created a domain that is permissive for transcription.
However, the long-term stability of this transcriptionally active
state within centrochromatin was unknown. It is widely known
that transgenes inserted into ectopic sites in human cells tend
to be silenced over time.67 Because the alphoidtetO expression
domain is flanked by heterochromatin, which has a propensity
to spread20 we wondered whether chromatin barriers or
insulator sequences might be essential for stable transgene
expression in alphoidtetO-HAC centrochromatin.

So far, very few elements with such activity have been
described (reviewed in refs 68 and 69). We therefore set out to
screen for insulator sequences that would protect transgenes
from epigenetic silencing in the alphoidtetO-HAC. Pericentro-
meric regions of mammalian chromosomes contain repetitive
DNA sequences, including gamma-satellite DNA, that exhibit a
high rate of evolutionary change. However, the exact role of
these sequences with respect to kinetochore/heterochromatin
structure and function remains unknown. We developed a
system to study the function of gamma-satellite DNA in

Figure 3. (a) The alphoidtetO-HAC carrying a gene of interest flanked
by insulator sequences and tTA was delivered from the donor hamster
CHO cells to the target human gene-deficient cells via the MMCT
procedure. (b) The tTA(VP64) is transiently expressed and
inactivated by doxycycline (Dox). (c) After removal of doxycycline
from the media, tTA(VP64) binds to the tetO sequences of the HAC
and shatters centrochromatin. (d) Inactivation of centrochromatin
leads to rapid HAC loss in the course of cell divisions.
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maintaining active chromatin domains. The system involved in
vitro amplification of a 220 bp gamma-satellite repeat up to 3
kb, 9 kb, and 24 kb arrays by RCA.32 These arrays were then
integrated into the RL5 locus on chromosome 4 in mouse
erythroleukemia cells.70 Indeed, the human pericentromeric
gamma-satellite DNA sequences promoted a transcriptionally
permissive chromatin conformation in an adjacent transgene
and protected the transgene from epigenetic silencing.71 In
hematopoietic cells, the antisilencing and heterochromatin-
arresting activities of gamma-satellite DNA require the binding
of Ikaros, a protein that regulates hematopoeiesis.72

The structural conservation of gamma-satellite in pericen-
tromeric regions of most chromosomes in humans and
nonhuman primates suggests that gamma-satellite arrays may
have a structural and/or functional role in the centromere,
possibly preventing the spreading of pericentric heterochro-
matin into chromosomal arms. As such, the gamma-satellite
DNA resembles a barrier element.71 Together, these
observations suggest that gamma-satellite DNA plays a role
in separating specific domains of chromatin/heterochromatin
and might therefore protect transgenes inserted into the HAC
from silencing.
In budding and fission yeast, tRNA genes can function as

chromatin barrier elements.73,74 However, until recently there
was no experimental evidence that tRNA exhibits barrier
activity in mammals. We therefore investigated whether tRNA
genes can function as chromatin barrier elements. Indeed, we
and others showed that functional copies of tRNA genes
function as barrier insulators in mammalian cells.75,76

In a follow-up study, we compared the activity of different
chromatin insulators on the HAC vector. We compared the
effects of three chromatin insulators, cHS4,77 gamma-satellite
DNA,71 and tDNA75,76 on the expression of an EGFP
transgene inserted into the loxP site of the alphoidtetO-HAC
vector. A tDNA insulator consisting of two functional copies of
tRNA genes showed the highest barrier activity, followed by
gamma-satellite DNA and cHS4.57 These results showed that
proximity to centrochromatin does not protect genes lacking
chromatin insulators from epigenetic silencing. Therefore,
strategies for transgenesis using HAC vectors, including
alphoidtetO-HAC, should include barrier elements such as
tDNA and gamma-satellite DNA to prevent gene silencing
(Figure 3).
2.4. An Improved Microcell-Mediated Chromosome

Transfer (MMCT) Technique for HAC Transfer to
Recipient Cells. Gene loading into the HAC is most easily
performed in CHO cells, so MMCT transfer of alphoidtetO-
HAC carrying a genetic locus to human gene-deficient cells is a
key step for gene complementation and function analysis.
Though the MMCT method was developed more than 40
years ago,65 two main limitations make the method tedious.
First, the frequency of HAC transfer from donor CHO cells
into recipient cells is very low. Second, MMCT is not
applicable for all types of recipient cells, particularly those
whose fusion with microcells is very inefficient. To minimize
these problems, we have optimized the MMCT protocol.59 In
the new protocol the following modifications have been made:
(i) Colcemid, a microtubule inhibitor that arrests cells at
metaphase, was replaced with TN-16 + Griseofulvin; (ii)
Cytochalasin B, an actin inhibitor that induces actin
cytoskeleton disassembling, was replaced with Latrunculin B.
Such modifications in combination with a collagen/laminin
surface coating, that improves adherence to the culture flask,

increases the efficiency of HAC transfer to recipient cells at
least 10 times (Figure 4). Moreover, the novel protocol is also

less damaging to HAC than the standard MMCT method.59

The modified protocol was successfully applied to alphoidtetO-
HAC transfer to several recipient cell lines, including human
mesenchymal stem cells and mouse embryonic stem cells.
Recently another group78 also developed a highly efficient
chromosome transfer method, called retro-MMCT. This is
based on Chinese hamster ovary cells (CHO) expressing
envelope proteins derived from ecotropic or amphotropic
murine leukemia viruses. Using this method, the HAC was
transferred to mouse embryonic fibroblasts with 26.5 times
greater efficiency than that obtained using conventional
MMCT. Thus, both modified MMCT methods allow a
significant improvement of HAC transfer to various types of
target cell.

2.5. Expression of a Genomic Copy of Human Genes
from alphoidtetO-HAC. The alphoidtetO-HAC has been used
to deliver genomic loci carrying two human average-size
cancer-associated genes, VHL (∼25 kb) and NBS1 (∼60 kb),
and complement genetic deficiencies in cell lines derived from
the patients with deficiencies in either VHL or NBS1 using the
strategy summarized in Figure 5.53 Mutations in the VHL gene
lead to von Hippel−Lindau syndrome (VHL; MIM 193300).
Mutations in the NBS1 gene lead to Nijmegen breakage
syndrome (NBS; MIM 251260). Functional expression of

Figure 4. Scheme showing key modifications of the original microcell-
mediated chromosome transfer (MMCT) technique (left). The
modified MMCT transfer (right) includes replacement of two key
chemicals, Colcemid and Cytochalasin, by TN16 + Griseofulvin and
Latrunculin B, (right). Efficiency of the new protocol is approximately
10 times higher compared to the original one (red numbers at the
bottom).
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pVHL and pNBS1 in recipient cells and rescue of the mutant
phenotypes was demonstrated. Importantly, the mutant
phenotypes were restored after specific elimination (“curing”)
of the HAC from the cells following targeted inactivation of its
kinetochore.
In another study, the alphoidtetO-HAC vector was used for

delivery and expression of a 90 kb genomic copy of the BRCA1
gene into the gene-deficient human cells.54 BRCA1 is involved
in many disparate cellular functions, including DNA damage
repair, cell-cycle checkpoint activation, gene transcriptional
regulation, DNA replication, centrosome function and others.
However, no unifying mechanistic framework that links the
reported biochemical activity of BRCA1 to its tumor
suppressor function has yet been identified. After insertion of
a full-length BRCA1 gene into the loxP site of the HAC and its
transfer into BRCA1-deficient human cells,54 a battery of
known functional tests was carried out to demonstrate
functionality of the transgene. Then, specific experiments
were performed to investigate a recently proposed role of
BRCA1 in maintenance of global heterochromatin integrity.
We demonstrated that BRCA1 deficiency results in an elevated
level of transcription of diverged pericentromeric repeats
forming constitutive heterochromatin as well as higher-order
alpha-satellite repeats (HORs). Together, these could
contribute to chromosome instability observed in the Brca1-
deficient cells. Our data extended previous observations that
BRCA1 may promote heterochromatin formation in a genomic
locus-specific manner and support the hypothesis that
epigenetic alterations of these regions initiated in the absence
of BRCA1 could impact other gene(s) and nuclear structural
interactions, leading to cell transformation.
All genes described above were isolated from the total

human genome by a cloning technique that is based on
transformation-associated recombination (TAR) in the yeast
Saccharomyces cerevisiae.35−38,79,80 TAR cloning allows selective
recovery of chromosome segments that are up to 300 kb in
length from complex genomes (Figure 5a,b). A modified
CRISPR/TAR technology improved the efficiency of TAR
cloning, with up to 32% of yeast transformants containing the
gene of interest.81 The alphoidtetO-HAC-based delivery vector
combined with TAR cloning can be widely used to characterize
gene function and genome variation, including mutations and
even polymorphic structural rearrangements in patient
genomes.

2.6. Construction of AlphoidtetO-HAC with Multi-
integration Site To Assemble Large Entire Genomic
Loci and Engineer Synthetic Chromosomes with a
Predetermined Set of Genes. The assembly of multiple
genes or entire loci or transfer of multiple genes into desired
cells using the HAC vector has multiple applications in
functional genomics. A few years ago several laboratories
suggested using artificial chromosomes (AC) to assemble large
entire genomic loci or several genes on the same HAC
molecule using a multi-integrase system.63,64,82−84 Therefore,
construction of an alphoidtetO-HAC containing a multi-
integration site was our next step. To reach this goal, we
designed an iterative integration system (IIS) that utilizes three
recombinases: Cre, ΦC31, and ΦBT1. This IIS-alphoidtetO-
HAC system allows assembly of functional genes on the same
HAC DNA molecule (Figure 6)58 and has several notable
advantages that set it apart from other artificial chromosome-
based systems. These include the assembly of an unlimited
number of genomic DNA segments and the opportunity to

Figure 5. (a) Transformation-associated recombination (TAR)
cloning of a gene of interest from total genomic DNA with a TAR
vector containing YAC and BAC cassettes and two unique targeting
sequences (hook1 and hook2) (in green) homologous to the 5′ and
3′ ends of a gene. Genomic DNA and a linearized TAR vector are
cotransformed into the yeast Saccharomyces cerevisiae cells. (b)
Recombination between targeting sequences in the vector and the
targeted sequences in the genomic DNA fragment leads to rescue of a
gene as a circular TAR/YAC/BAC molecule. (c) Transfer of the
TAR-isolated molecules containing a region of interest from yeast
cells to bacterial cells by electroporation with the followed isolation of
BAC DNA by a standard procedure. (d) Loading of a TAR-isolated
gene of interest into the single loxP site of the HAC by Cre-loxP
mediated recombination in hamster cultured cells. (e) The assembled
HAC contains the tTA cassette and a gene of interest flanked by
insulator sequences to protect the gene from epigenetic silencing.
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remove mis-incorporated DNA segments. As for other
alphoidtetO-HACs, the IIS-alphoidtetO-HAC can be “cured”
from dividing cell populations, allowing target cells to revert to
their pretransformed state. In future studies, the IIS-
alphoidtetO-HAC may have the potential to engineer synthetic
chromosomes with a predetermined set of genes, thereby
allowing investigation of complex biomedical and gene
regulation pathways.

3. USE OF THE ALPHOIDTETO-HAC FOR EPIGENETIC
ENGINEERING OF CHROMATIN WITHIN A SINGLE
FUNCTIONAL CENTROMERE
3.1. Human Centromeres: What We Know and What

We Do Not. Centromeres define the site of the assembly of
the kinetochore, a multiprotein complex that directs
chromosome segregation by binding microtubules.85−87 In
humans, endogenous centromeres typically form on chromo-
some-specific higher-order alphoid DNA arrays, that are
composed of 171 bp alpha-satellite monomer units tandemly
arranged in a directional head-to-tail fashion.20 The remarkable
diversity in sequence composition of centromeres across
species lies in contrast to their common function as a platform
for kinetochore assembly. Indeed, evidence of centromere
inactivation on stable dicentric chromosomes without the loss

of the underlying DNA sequences led to the widespread belief
that centromere specification is regulated by chromatin
modifications (epigenetic).88 This was strongly supported by
the discovery of stable chromosomes containing neocentro-
meres that completely lack alphoid DNA.89 The basis of this
epigenetic regulation is still under investigation, but it was
suggested that one key factor could be binding of the
centromere-specific histone H3, CENP-A.90−93

Microscopic investigation of stretched kinetochore fibers
revealed that blocks of CENP-A nucleosomes are interspersed
with H3 nucleosomes that contain transcription-associated
modifications.39,94,95 This special chromatin, which has been
termed “centrochromatin”,95 is flanked by constitutive
heterochromatin and suggests a functional link between the
local chromatin environment and kinetochore function. These
observations raise several questions about the exact nature of
the chromatin that specifies kinetochore assembly and
propagation: (1) For centromeres, aside from CENP-A, what
combination of histone modifications defines the elusive
epigenetic state that is centrochromatin? (2) Can histone
modifications be manipulated to turn normal chromatin into
centrochromatin and to reverseto inactivatethe estab-
lished centromeres? (3) What barrier prevents heterochroma-
tin spreading into centrochromatin? Answering these questions
with native human chromosomes is extremely challenging.
Aside from the fact that the sequence of centromeric DNA
arrays remains largely uncharted territory, the use of RNAi or
inhibitors to manipulate the composition of centrochromatin is
fraught with difficulties beyond the usual specificity issues
associated with both of those approaches.
Thus, despite their importance for proper chromosome

segregation, the structure and function of human centromeres
remain relatively poorly understood until now. This is at least
in part because of the highly repetitive nature of centromeric
DNA, which has made it difficult to clone, sequence, and
study. Indeed, only the Y chromosome centromere has been
recently sequenced in its entirety.96 The alphoidtetO-HAC,
which contains tetO sequences that can be specifically targeted
with chromatin modifiers fused to the tetR provides a unique
tool for dissecting the chromatin (epigenetic) requirements for
faithful chromosome segregation (reviewed in refs 49 and 52).

3.2. Centromere Chromatin State and Kinetochore
Function are Interconnected. Since centromeres lie within
constitutive heterochromatin regions, it was long assumed that
centromeres themselves were a special form of heterochroma-
tin. The first study using the alphoidtetO HAC to manipulate
the epigenetic state of centromeric chromatin examined the
role of heterochromatin at centromeres. Tethering a
heterochromatin-seeding transcription repressor (tTS) into
the alphoidtetO-HAC kinetochore resulted in a dramatic loss of
kinetochore function over the course of several cell divisions.42

At a molecular level, heterochromatin formation caused a loss
of CENP-A correlated with a decrease in H3K4me2 and an
increase in H3K9me3 levels paralleled by recruitment of HP1
and chromosome segregation defects. Subsequent investiga-
tions using the alphoidtetO HAC revealed that heterochroma-
tin-associated loss of kinetochore structure was a hierarchical
process, with CENP-C and CENP-H being rapidly displaced,
and preceding a more gradual loss of CENP-A (Figure 7).40 In
this study, HAC kinetochore function collapsed at a time when
CENP-A was still present at the centromere, confirming that
CENP-A alone is not sufficient for proper kinetochore function
in an unfavorable chromatin environment. Together, these

Figure 6. Scheme of DNA segment integration by the iterative
integration system (IIS). (a) The starting platform cassette contains
the GHT marker. The cells express a green fluorescence protein
(GFP). Also, they are hygromycin resistant (hph) and Ganciclovir
sensitive (TK). (b) After the first round of recombination between a
Type I carrier vector and a platform cassette by Cre recombinase and
ΦC31 integrase, the GHT marker is replaced by the PCF marker and
the first DNA segment of interest is integrated into the platform
cassette (DNA1). The cells have red fluorescence (mCherry),
Puromycin resistance (Pac), and 5-Fluorocytosin sensitivity (FcyFur).
(c) After recombination between a Type II carrier vector and a
platform cassette by Cre recombinase and ΦBT1 integrase, the PCF
marker is replaced by the GHT marker again and the second DNA
segment of interest is integrated into the platform cassette (DNA2).
The structure of integration sites is identical to the stating cassette
aside from the integration of DNA segments of interest, DNA1 and
DNA2. (d) The third DNA segment of interest (DNA3) can be
integrated similar to the DNA1 segment by using a Type I carrier
vector.
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studies provided the first conclusive evidence that centromere
chromatin state and kinetochore function are tightly
interconnected.
3.3. Human Kinetochores Have a Remarkable

Plasticity That Tolerates Profound Changes to Their
Chromatin Environment but Critically Sensitive to the
Level of Centromeric Transcription. The demonstration
that seeding heterochromatin within centrochromatin is
detrimental to kinetochore function fits well with previous
observations linking the centrochromatin domain to transcrip-

tional activity. The first of these was the discovery of
H3K4me2 in centromeres.95 This modification is typically
found at the 5′ region of poised or actively transcribed genes.97
Subsequent experiments (and references therein) revealed
ongoing transcription at centromeres in various organisms,
including humans and C. elegans.98,99 Remarkably, this
transcription occurs during mitosis.98,100 The role of the
transcripts is still debated.101−103

We used the alphoidtetO-HAC system to address specifically
the question of how transcription and transcriptionally
permissive chromatin influence kinetochore maintenance.
Tethering a mild transcriptional activator (the minimal
activation domain of NF-κB p65) within the HAC centromere
revealed a remarkable degree of plasticity of kinetochore
toward the underlying chromatin. Despite the induction of
local histone H3K9 hyper-acetylation and elevated RNA
polymerase activity (a ∼10-fold elevation in transcript levels),
levels of CENP-A or CENP-C at the HAC were virtually
unaffected. Indeed, these engineered HACs retained a fully
functional kinetochore and were stably propagated through
subsequent cell divisions.47 In striking contrast, tethering the
more potent transcriptional activator VP16 (herpes virus VP16
activation domain) allowed histone H3K9 hyperacetylation
comparable to that seen after tethering p65 at the HAC, but
resulted in an ∼150-fold elevation in transcripts, approaching
the level of transcription of an endogenous housekeeping gene.
VP16 rapidly inactivated the HAC kinetochore due both to a
complete block of CENP-A loading, and to the specific and
rapid stripping of preassembled CENP-A from the HAC
kinetochore.47

Detailed analysis confirmed that centrochromatin of the
HAC, like that of endogenous chromosomes, resembles
domains found in the body of some actively transcribed
housekeeping genes, containing H3K4me2 and H3K36me2.
To study the functional link between this transcription-
associated chromatin environment and kinetochore main-
tenance, we depleted H3K4me2 specifically from the
alphoidtetO-HAC centromere by tethering the H3K4me2-
specific demethylase LSD1.39 Tethering LSD1 to the
alphoidtetO-HAC specifically and efficiently depleted
H3K4me2 from its centromere, leaving other native
centromeres untouched. H3K4me2 depletion caused a drop
in transcription of the centromeric α-satellite DNA accom-
panied by a loss of CENP-A. The latter was explained by a
failure of the HAC centromere to efficiently recruit the CENP-
A-specific chaperone HJURP. Kinetochores depleted of
H3K4me2 were inactivated over the course of the next few
days, probably because centromeres contain more CENP-A
molecules than are required for kinetochore assembly.104,105

Together, these results provide a functional link between
centromeric chromatin, α-satellite DNA transcription, main-
tenance of CENP-A levels, and kinetochore stability.

3.4. Histone H3K9 Acetyl/Methyl Balances Regulate
CENP-A Assembly. The notion that the balance between
heterochromatin and transcription are important in regulating
de novo CENP-A assembly and kinetochore formation on
human centromeric alphoid DNA arrays was explored in a
study inspired by previous experiments with the alphoidtetO-
HAC. This study started with the observation that HACs could
be formed in HT1080 fibrosarcoma cells, but essentially never
in other cell lines, such as HeLa. Careful analysis revealed that
HT1080 appears to be hypomorphic for the H3K9
methyltransferase Suv39H1. This led to experiments in

Figure 7. Targeting of alphoidtetO-HAC by different tetR-fusions. The
scheme illustrates how protein targeting works to study kinetochore
organization. (a) A simplified structure of kinetochore in the
alphoidtetO-HAC. (b) A fusion of tet-repressor with the transcriptional
silencer KAP1 binds to the tet-operator sequences in HAC
kinetochore and induces local heterochromatinization. (c) The
binding results in kinetochore disassembly. Centromeric proteins
CENP-C, CENP-H, and Hec1 are missing first from HAC
kinetochore. In contrast, the CENP-A protein remains. It is worth
noting that HAC kinetochore function collapses at a time when
CENP-A is still present at the centromere confirming that CENP-A
alone is not sufficient to drive kinetochore formation in an
unfavorable chromatin context.
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which it was shown that “open” chromatin induced by
tethering histone acetyltransferases (HATs) to alphoid DNA
arrays could induce assembly of CENP-A and other
kinetochore proteins at ectopic alphoidtetO sites inserted into
chromosome arms.48 These results confirmed that de novo
CENP-A assembly requires an “open” chromatin state.
Importantly, a brief pulse of histone H3 acetylation was
observed in vivo at the end of mitosis, coincident with the
onset of deposition of new CENP-A molecules at centro-
meres.106,107 Importantly, transfection of alphoidtetO DNA
arrays together with tetR-HAT fusions significantly increased
the efficiency of HAC formation and de novo stable CENP-A
assembly, even enabling HAC formation in HeLa cell, thereby
breaking a barrier to HAC formation in cells other than
HT1080.48

3.5. Centromeric Transcription and H3K9 Acetylation
Keep Heterochromatin from Invading Centrochroma-
tin. To ask whether it was α-satellite transcription per se, or the
chromatin environment generated as a result of transcription
that is important for kinetochore maintenance, we recently
designed a novel “in situ epistasis” assay in which the specific
H3K4me2 demethylase LSD2 plus synthetic modules with
competing activities were simultaneously targeted to the
synthetic alphoidtetO-HAC centromere.41 As in our previous
study, H3K4me2 loss decreases centromeric transcription,
CENP-A assembly, and HAC stability associated with
spreading of the heterochromatin mark H3K9me3 across the
HAC centromere (Figure 8). Surprisingly, cotethering of LSD2
plus the HAT subunit CENP-28/Eaf6 (which stimulated

transcription associated with H4K12 hyperacetylation), did not
rescue the phenotype observed after tethering LSD2 alone. In
contrast, cotethering of LSD2 plus the p65 activation domain
(which stimulated transcription associated with H3K9 hyper-
acetylation), did rescue kinetochore stability and function.
These results suggest that H3K9 hyperacetylation might form a
barrier to prevent heterochromatin invasion of human
centromeres by blocking formation of H3K9me3 and by
allowing proper H3.3 turnover, which in turn allows proper
chromatin remodeling for de novo CENP-A deposition and
long-term kinetochore maintenance.41 Other recent studies
showed that one HAT involved in centromere licensing for de
novo CENP-A assembly is KAT7, which acetylates histone H3
specifically at lysine 14.50 KAT7 recruits the chromatin
remodeling factor RSF1 through chromatin acetylation, and
these proteins prevent heterochromatin spreading by a histone
eviction or turnover mechanism (Figure 9). Therefore,

epigenetic engineering studies using the alphoidtetO HAC
allowed detailed analysis to understand the specific contribu-
tions of different histone modifications and transcription on
kinetochore maintenance. Overall, they revealed that there is a
balance between histone modifications and transcription that
promote the proper epigenetic environment for kinetochore
maintenance.

3.6. CENP-C and CENP-I Are Key Connecting Factors
for Kinetochore and CENP-A Assembly. Although it is
generally accepted that CENP-A is an epigenetic mark that

Figure 8. Model of the effects observed after engineering the
alphoidtetO-HAC by in situ epistasis assays. (a) Tethering LSD2
(H3K4 demethylase) and p65 (H3K9 HAT). Chromatin competent
for RNAP II transcription and chromatin remodeling, allowing de
novo CENP-A loading. (b) Tethering LSD2 (H3K4 demethylase) and
CENP-28 (H4K12 HAT). Chromatin competent for RNAP II
transcription but defective histone H3.3 turnover, abolishing new
CENP-A loading, favoring heterochromatin spreading into centro-
chromatin and ultimately inactivating the HAC kinetochore.

Figure 9. A model of the balance between centrochromatin and
heterochromatin. CENP-C binds to centromchromatin through
CENP-A nucleosome and/or CENP-B. CENP-C, CENP-I, and
M18BP1 interact with each other. M18BP1 recruits HJURP through
interactions with Mis18α (α) and Mis18β (β). M18BP1 also interacts
with acetyltransferase KAT7. RSF1 assembled on the acetylated
chromatin and prevents heterochromatin spreading into centrochro-
matin through a histone eviction or turnover mechanism. This
mechanism may proceed in parallel with new CENP-A deposition by
HJURP.
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specifies centromere identity, the pathways leading to the
formation and maintenance of centromere chromatin remain
unclear. We previously generated cell lines bearing the tetO
alphoid array at ectopic integration sites on chromosomal
armsthe alphoidtetO integrations,48 and we have recently
used these to examine the regulation of CENP-A assembly and
maintenance at centromeres.51 The ability of the different
factors fused to tetR to nucleate centrochromatin was assessed
by their ability to assemble CENP-A at the ectopic integration
sites. Many kinetochore structural components can induce de
novo CENP-A assembly at the ectopic site. These components
work by recruiting CENP-C and subsequently recruiting
M18BP1, which then recruits the CENP-A chaperone
HJURP as part of the Mis18 complex.108,109 CENP-I can
also recruit M18BP1 and therefore enhances centromeric
M18BP1 assembly downstream of CENP-C (Figure 9). Thus,
we suggest that CENP-C and CENP-I are key factors
connecting the kinetochore itself to new CENP-A assembly.
To summarize, the use of the alphoidtetO arrays (either HAC or
chromosomal integrations) has generated a wide range of data
that confirm the long-standing hypothesis of the “epigenetic”
chromatin environment as integral to centromere identity
(reviewed in ref 52). Moreover, the alphoidtetO-HAC offers the
potential to further dissect the requirement of individual
histone modifications and cellular processes involved in
kinetochore formation and maintenance.
3.7. Future Direction: Next-Generation Human

Artificial Chromosomes Containing Alphoid Arrays
with Different Targeted Sequences. Although hetero-
chromatin is frequently found in close proximity to
centromeres, its role in chromosome segregation is not yet
fully understood and may vary among species. S. pombe may
provide an extreme example with its dependence on
heterochromatin for de novo deposition of CENP-A and for
proper cohesin dynamics.110,111 In plants, heterochromatin and
chromosome segregation appear to be largely unrelated:
chromosome transmission is impaired by mutations that affect
cohesion but not by those that affect heterochromatin
formation.112 The role of pericentromeric heterochromatin in
the function of human kinetochores has been studied
extensively but remains poorly understood despite suggestions

that heterochromatin could be involved in maintaining
genomic stability and that defects in heterochromatin assembly
at centromeres are associated with chromosome segregation
defects and tumorogenesis,113,114 as reviewed in ref 52.
One limitation of the alphoidtetO-HAC is the impossibility of

separately engineering the two centromeric domains (kinet-
ochore and pericentromeric heterochromatin) and study their
functional interactions. Using RCA-TAR technology, we have
therefore constructed a novel synthetic HAC containing two
centromeric domains, based on two different synthetic alphoid
DNA arrays: the alphoidhybrid-HAC (Figure 10). As a basis for
the kinetochore, we used a dimeric repeat based on
chromosome 21 HOR DNA with CENP-B boxes and tet
operators in alternating repeats. As a basis for the
heterochromatin, we constructed an array based on 11
monomers from the chromosome 21 monomeric alpha-
satellite DNA lacking CENP-B boxes and containing lac
operator (lacO) and yeast transcriptional factor Gal4. The lack
of CENP-B boxes should preclude CENP-A assembly on this
array.29,115 The two arrays were combined by recombination in
the yeast S. cerevisiae. Transfection of the hybrid array into
HT1080 cells resulted in formation of the alphoidhybrid-
HAC.116 Such hybrid HACs will allow to simultaneously
target different centromeric compartments independently
using different targeting systems.

4. HUMAN ARTIFICIAL CHROMOSOMES FOR
MEASURING CHROMOSOME INSTABILITY (CIN) IN
CANCER CELLS

4.1. Chromosome Instability (CIN) as a Driver of
Tumorigenesis. Whole chromosomal instability (CIN),
manifested as unequal chromosome distribution during cell
division, is a distinguishing feature of most cancer types.117,118

CIN is generally considered to drive tumorigenesis, but a
threshold level exists whereby further increases in CIN
frequency actually hinder tumor growth. Therefore, CIN can
be used as a strategy for cancer therapy.119−124 At present, the
rate of chromosome mis-segregation is quantified by time-
consuming techniques such as coupling clonal cell analysis
with karyotyping, in vitro micronuclei (MNi) assays or
fluorescence in situ hybridization (FISH). In addition, while

Figure 10. Next-generation of synthetic human artificial chromosomes. (a) Schematic representation of the genetic and epigenetic structure of the
alphoidhybrid-HAC. Green and orange arrows represent the types of high order repeats (HORs) used for synthesizing the HAC. (b) Oligo-FISH
image of a metaphase spread containing the alphoidhybrid-HAC. Oligonucleotides recognizing tetO (red) and lacO+gal4 sequences (green) were
used.
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CIN is appealing for therapeutic exploitation, drugs that
increase CIN beyond the therapeutic threshold are currently
few in number, and the clinical promise of targeting the CIN
phenotype warrants new screening efforts.
4.2. HAC-Based “Loss of Signal” Assay for Measuring

Chromosome Instability and Identification of Drugs
that Elevate CIN in Cancer Cells. We have developed a new
quantitative and sensitive assay for measuring CIN based on
the use of the alphoidtetO-HAC carrying a constitutively
expressed EGFP transgene.57 Cells that inherit the HAC
display green fluorescence, while cells lacking the HAC do not.
This allows the measurement of HAC loss rate by routine flow
cytometry. Using this assay, we have analyzed well-known
antimitotic, spindle-targeting compounds. For each drug, the
rate of HAC loss was measured by flow cytometry as a
proportion of nonfluorescent cells in the cell population, which
was confirmed by FISH analysis. On the basis of our estimates,
despite their similar cytotoxicity, the analyzed drugs affect the
rates of HAC mis-segregation during mitotic divisions
differently. The highest rate of HAC mis-segregation was
observed for microtubule-stabilizing drugs such as taxol and
peloruside A. Thus, this simple HAC-based assay allowed a
quick and efficient screen for drugs that affect chromosome
mis-segregation. It also allowed us to rank compounds with
similar mechanisms of action based on their effect on the rate
of chromosome loss. We recently used this assay to analyze
hundreds of anticancer drugs used in clinics with respect to
their effects on chromosome transmission fidelity.125 Drugs
with various mechanisms of action, such as antimicrotubule
activity, histone deacetylase inhibition, mitotic checkpoint
inhibition, and targeting of DNA replication and damage
responses, were included in the analysis. Ranking of the drugs
based on their ability to induce HAC loss revealed that
paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib,
olaparib, peloruside A, GW843682, VX-680, and cisplatin
were the top 10 drugs inducing HAC CIN. Identification of
currently used compounds that greatly increase chromosome
mis-segregation rates should expedite the development of new

therapeutic strategies to target and leverage the CIN
phenotype in cancer cells.118−120

4.3. HAC-Based “Gain of Signal” High-Throughput
Screening Assay for Analysis of Chemical Libraries. It is
difficult to use “loss of signal” assays for sensitive high-
throughput screening of chemical libraries using a fluorescence
microtiter plate reader. We therefore developed a novel “gain
of signal” HAC assay for CIN. In this system, the HAC carries
a constitutively expressed shRNA against an EGFP transgene
integrated into the genome of the host cell line.126 Thus, cells
that inherit the HAC do not display green fluorescence, while
cells lacking the HAC do (Figure 11). We verified the accuracy
of this assay by measuring the level of CIN induced by known
antimitotic drugs, adding to the list of previously ranked CIN
inducing compounds, two newly characterized inhibitors of the
centromere-associated protein CENP-E, PF-2771, and
GSK923295 that exhibit the highest effect on chromosome
instability measured to date. This assay was also sensitive
enough to detect increase of CIN after siRNA depletion of
known genes controlling mitotic progression through distinct
mechanisms. Hence this assay can be utilized in experiments to
uncover new human CIN genes, which may expedite the
development of new therapeutic strategies that target cancer
cells.

4.4. Human Artificial Chromosome To Identify
Conserved Dosage Chromosome Instability Genes in
Human Cancer. Somatic copy number amplification and
gene overexpression are common features of many cancers. To
determine the role of gene overexpression on CIN, the Hieter’s
group performed genome-wide screens in the budding yeast
for genes that cause CIN when overexpressed, a phenotype
which was referred as dosage CIN (dCIN), and identified 245
dCIN genes. This catalog of genes revealed human orthologs
known to be recurrently overexpressed and/or amplified in
tumors. Using the “loss of signal” HAC-based CIN assay (see
section 4.2) the Hieter lab in collaboration with our group has
shown that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase,
and TAF12, an RNA polymerase II TATA-box binding factor,

Figure 11. Scheme of the high-throughput assay using a fluorescence microtiter plate reader to characterize chemical libraries. In a new system, the
alphoidhybrid-HAC carries a constitutively expressed shRNA against the eGFP transgene integrated into the genome of the human HT1080 cells.
Thus, cells that inherit the HAC do not display green fluorescence, while cells lacking the HAC do. It is expected that the control population of
untreated cells should show uniform red fluorescence. A cell population that has lost the HAC after drug treatment should be highly variable in
fluorescence. The actual number and percentage of cells with the HAC-shRNA can be measured by a scanning microscope. Thus, the drugs, which
increase HAC loss and, therefore, increase spontaneous chromosome missegregation rates, may be identified. (HiTS stands for High-Throughput
Screening.) Natural HAC loss is a parameter of cells that loose the HAC without drug treatment while cultured without selective antibiotics. It is
usually 2−5% of cells in population.
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trigger CIN when overexpressed in human cells.127 The CIN
genes identified in this work may reveal genes that cause CIN
when overexpressed in cancer, which can then be leveraged
through synthetic dosage lethality (SDL) to selectively target
tumors.

5. CONCLUSIONS AND PROSPECTS
The alphoidtetO-HAC has proven to be a highly versatile
reagent for studies of centromere epigenetics, for the
permanent or temporary introduction of genetic loci (genes
including both introns, exons, and their linked control
elements) into wild-type and mutant cells as well as for
screens for drugs and genetic alterations that induce
chromosome instability. Advances in understanding chromatin
determinants required for CENP-A deposition and kineto-
chore assembly offer opportunities to develop protocols for
more efficient HAC formation in a wide variety of cell lines.
Construction of new HACs containing different targeting sites
in kinetochore chromatin and pericentromeric heterochroma-
tin will open a unique opportunity to study functional
interactions between these domains. The potential of the
alphoidtetO-HAC and its derivatives in synthetic biology for cell
and tissue engineering is only beginning to be explored. In the
future, it will be very interesting to see how the alphoidtetO-
HAC and its derivatives may be used to engineer novel
biosynthetic pathways and novel synthetic chromosomes for
potential gene therapy needs.
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