33 research outputs found
A Global Comparison of Stream Diatom Beta Diversity on Islands Versus Continents Across Scales
Online version of record before inclusion in an issue[EN] Aim: To evaluate the patterns of stream diatom beta diversity in islands versus continents across scales, to relate community similarities with spatial and environmental distances and to investigate the role of island characteristics in shaping insular diatom beta diversity.
Location: Africa, America, Europe and the Pacific.
Time Period: Present.
Major Taxa Studied: Stream diatoms.
Methods: We compared diatom beta diversity between islands and continents at large scales (within biogeographic regions) in two study regions (America and Europe) and at small scales (within islands/equivalent areas in continents) in three regions (Africa, America and Europe) partitioning beta diversity into turnover and nestedness components. We used a partial Mantel test and distanceâdecay curves to assess how diatom beta diversity on islands and continents is affected by spatial and environmental distances. Finally, using island data from all four regions, we evaluated the relationship between island beta diversity and island latitude, area, age and isolation using linear models.
Results: At large scales, mean dissimilarities were higher on islands than in continents in Europe but lower in America. At smaller scales, the differences varied mostly depending on island isolation. Beta diversity was mainly caused by species turnover. Partial Mantel test and distanceâdecay curves revealed that spatial and environmental distances shaped diatom beta diversity at large, but not at small scales. Moreover, diatom beta diversity on islands was affected by island latitude, age and isolation, but not by island area.
Main Conclusions: Diatom beta diversity on islands versus continents and its responses to spatial and environmental factors are scale and region dependent. Incomplete colonisation, evolutionary processes and environmental filtering likely contribute to insular beta diversity, which further varies with island latitude, age and isolation. This study sheds new light on beta diversity of microorganisms on islands and suggests that beta diversity should be explicitly considered in island biogeographical researchSIThis work was supported by the Academy of Finland (grant no. 346812 to J.S.); the Institut Français de Finlande; the Embassy of France to Finland; the French Ministry of Education and Higher Education; and the Finnish Society of Sciences and Letters. J. Wang was further supported by the National Natural Science Foundation of China (91851117 and 41871048), CAS Key Research Program of Frontier Sciences (QYZDB- SSW-DQC043) and The National Key Research and Development Program of China (2019YFA0607100
Stream diatom community assembly processes in islands and continents: a global perspective
[EN] Understanding the roles of deterministic and stochastic processes in community assembly is essential for gaining insights into the biogeographical patterns of biodiversity. However, the way community assembly processes operate is still not fully understood, especially in oceanic islands. In this study, we examine the importance of assembly processes in shaping diatom communities in islands and continents, while also investigating the influence of climate and local water chemistry variables on species distributions.
Location
Global.
Taxon
Stream benthic diatoms.
Methods
We used diatom datasets from five continents and 19 islands and applied beta diversity analyses with a null model approach and hierarchical joint species distribution modelling. To facilitate comparisons with continents, we used continental area equivalents (CAEs), which represent continental subsets with comparable areas and the same number of study sites as their corresponding islands counterparts.
Results
We found that homogeneous selection (i.e., communities being more similar than the random expectation) was the dominant assembly process within islands whereas stochastic processes tended to be more important within continents. In addition, assembly processes were influenced by study scale and island isolation. Climatic variables showed a greater influence on species distribution than local factors. However, in islands, local environmental variables had a greater impact on the distributions of unique taxa as opposed to non-unique taxa.
Main Conclusions
We observed that the assembly processes of diatom communities were complex and influenced by a combination of deterministic and stochastic forces, which varied across spatial scales. In islands, there was no universal pattern of assembly processes, given that their influence depends on abiotic conditions such as area, isolation, and environmental heterogeneity. In addition, the sensitivity of species occurring uniquely in islands to local environmental variables suggests that they are perhaps less vulnerable to climatic changes but may be more influenced by changes in local physicochemistrySIFor financial support, the authors thank the Academy of Finland (grant nr. 346812 to JS); the Institut Francais de Finlande; the Embassy of France to Finland; the French Ministry of Education and Higher Education; Finnish Society of Sciences and Letters. J.J. Wang was further supported by the National Natural Science Foundation of China (91851117, 41871048), CAS Key Research Program of Frontier Sciences (QYZDB-SSW-DQC043), and The National Key Research and Development Program of China (2019YFA0607100
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Les intoxications médicamenteuses accidentelles chez l'enfant de moins de trois ans
LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF
ConfĂ©rence de concensus et urticaire chronique (enquĂȘte de pratique auprĂ©s de gĂ©nĂ©ralistes, de dermatologues et d'allergologues)
BORDEAUX2-BU Santé (330632101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Global management of brain metastasis from renal cell carcinoma.
During the last decade, major improvements have been made in the treatment of renal cell carcinoma (RCC) with the development and use of multiple tyrosine kinase inhibitors and immune checkpoint inhibitors. Brain metastases in RCC patients (BM-RCC) is associated with poor outcome and their management represents a challenge for clinicians. In most of case, brain metastases in this context require local intervention such as radiotherapy, stereotactic radiotherapy/stereotactic radiosurgery and whole brain radiation therapy. Despite efficacy in extracranial metastases, systemic therapies have modest antitumoral effect on cerebral lesions. In this review, we highlight the benefits and pitfalls of the available therapies in BM-RCC
Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.
The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy