11 research outputs found

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    ERRATUM: "FERMI DETECTION OF γ-RAY EMISSION FROM THE M2 SOFT X-RAY FLARE ON 2010 JUNE 12" (2012, ApJ, 745, 144)

    Get PDF
    Due to an error at the publisher, the times given for the major tick marks in the X-axis in Figure 1 of the published article are incorrect. The correctly labeled times should be "00:52:00," "00:54:00," ... , and "01:04:00." The correct version of Figure 1 and its caption is shown below. IOP Publishing sincerely regrets this error

    A reexamination of the Middle Paleolithic human remains from Riparo Tagliente, Italy

    No full text
    Despite new discoveries of human fossil remains, some aspects of paleoanthropological research are biased by the poor sample size, which limits our understanding of intra-species variability among the different hominin species. In this context, continuous assessment and reassessment of human fossil remains discovered decades ago, and often unknown to the scientific community, represent an opportunity to address this issue. Moreover, deciduous teeth are less studied than permanent dentitions, an aspect which contributes to limit our understanding. In the present study, we provide a detailed description of Tagliente 3 (upper right second deciduous molar) and Tagliente 4 (lower left deciduous canine), two deciduous teeth from Riparo Tagliente (Stallavena di Grezzana, Verona) attributed to Homo neanderthalensis. In terms of morphology and size, Tagliente 3 presents typical Neandertal derived features (e.g., likely large hypocone and complex topography of the enamel-dentine junction). Although deciduous canines usually do not provide substantial morphologically diagnostic information, Tagliente 4 falls in the upper range of the Neandertal variability for its bucco-lingual diameter. In terms of tissue proportions both teeth fall within the Neandertal range of variation: Tagliente 3 for the enamel thickness distribution and Tagliente 4 for the volume of the crown dentine. This work contributes to increase our knowledge on the variability of Neandertal deciduous dentition

    Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial

    No full text
    (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans.The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b).In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC) of 13 000 μg × h/L (median AUC 24 283 [IQR 16 135-31 311] μg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived logPRR and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg.The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy.Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities
    corecore