32 research outputs found

    Conservation of Endemic Bartram\u27s Bass: Nesting Microhabitat Use and Spatial Distribution with Congeners in the Savannah River Basin

    Get PDF
    Bartram’s Bass Micropterus sp. cf cataractae is endemic to the Savannah River basin of South Carolina and Georgia. Bartram’s Bass is threatened by habitat alteration and hybridization with invasive Alabama bass (M. henshalli) and other non-native co-occurring congeners. This study aimed to identify reproductive habitat preference of this species, and factors contributing to its occurrence. In Chapter 1 we identified Bartram’s Bass nesting preference throughout the upper portion of its native range. In spring/summer 2017 and 2018, snorkel surveys were performed in tributaries to quantify nesting microhabitat use of Bartram’s Bass. Zig-zag transects were used to locate nests and to quantify habitat availability. Nesting microhabitat parameters were recorded at each nest detected, and eggs were collected for genetic analysis. Average velocity at the 39 pure Bartram’s Bass nests observed was 0.09 ± 0.02 m/s, SD, lower than average available velocity of 0.22 ± 0.01 m/s, SD (p= 0.0028). Average depth of nests was 0.70 ± 0.04 m, SD and was similar to those available 0.67 ± 0.02 m, SD (p= 0.6946). The substrates used in nests during both breeding years combined were primarily silt (36%), cobble (31%), and gravel (21%), whereas the most available substrates observed in transects were bedrock (23%) and cobble (23%) (P In Chapter 2 we determined the relative importance of abiotic factors and distance from reservoirs for predicting occurrence of Bartram’s Bass. From March to November of 2017 and 2018, individuals were collected from 160 sites across the upper Savannah River basin. Sites represented a gradient of key abiotic variables—watershed- and riparian-scale land use types, ecoregions, stream gradient, and elevation. Genetic analysis of 241 individuals from 50 sites revealed Bartram’s Bass were present at 33 sites, and hybrids were present at 21 sites. Conditional inference trees were used to predict the variables that drive Bartram’s Bass distribution. Forested land cover at the watershed scale was the most significant predictor of Bartram’s Bass presence (p=0.0236). Pure individuals preferred sites of greater than 75% forested cover (

    Future Prospects for Local Energy Markets : Lessons from the Cornwall LEM

    Get PDF
    The Cornwall Local Energy Market was a four year trial (2016-2020) jointly funded by the European Regional Development Fund and Centrica. The aim was to unlock network capacity through intelligent management of supply and demand in constrained areas of the distribution network in Cornwall. This was achieved by installing a range of renewable and storage devices in homes and businesses and setting up an online trading platform to allow the Distribution Network Operator to purchase flexibility services from participants

    The metabolic regimes of 356 rivers in the United States

    Get PDF
    A national-scale quantification of metabolic energy flow in streams and rivers can improve understanding of the temporal dynamics of in-stream activity, links between energy cycling and ecosystem services, and the effects of human activities on aquatic metabolism. The two dominant terms in aquatic metabolism, gross primary production (GPP) and aerobic respiration (ER), have recently become practical to estimate for many sites due to improved modeling approaches and the availability of requisite model inputs in public datasets. We assembled inputs from the U.S. Geological Survey and National Aeronautics and Space Administration for October 2007 to January 2017. We then ran models to estimate daily GPP, ER, and the gas exchange rate coefficient for 356 streams and rivers across the continental United States. We also gathered potential explanatory variables and spatial information for cross-referencing this dataset with other datasets of watershed characteristics. This dataset offers a first national assessment of many-day time series of metabolic rates for up to 9 years per site, with a total of 490,907 site-days of estimates.We thank Jill Baron and the USGS Powell Center for financial support for this collaborative effort (Powell Center Working Group title: "Continental-scale overview of stream primary productivity, its links to water quality, and consequences for aquatic carbon biogeochemistry"). Additional financial support came from the USGS NAWQA program and Office of Water Information. NSF grants DEB-1146283 and EF1442501 partially supported ROH. A post-doctoral grant from the Basque Government partially supported MA. NAG was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Leah Colasuonno provided expert logistical support of our working group meetings. The developers of USGS ScienceBase were very helpful both in hosting this dataset and in responding to our requests. Randy Hunt and Mike Fienen of the USGS Wisconsin Modeling Center graciously provided access to their HTCondor cluster. Mike Vlah provided detailed and insightful reviews of the data and metadata

    Light and flow regimes regulate the metabolism of rivers

    Get PDF
    Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia Bonjour, Marina Palta, and members of the Duke River Center for their help in developing these ideas. This work was supported by grants from the NSF 1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.), 2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.), 1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological Survey funding for the working group was supported by the John Wesley Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc- toral associate at Duke University and as a postdoctoral associate (contractor) at the US Geological Survey

    Shifts in the smart research agenda? 100 priority questions to accelerate sustainable energy futures

    Get PDF
    Energy transitions are at the top of global agendas in response to the growing challenges of climate change and international conflict, with the EU positioning itself as playing a pivotal role in addressing climate risks and sustainability imperatives. European energy transition policies identify 'smart consumption' as a key element of these efforts, which have previously been explored from a predominantly technical perspective thus often failing to identify or address fundamental interlinkages with social systems and consequences. This paper aims to contribute to interdisciplinary energy research by analysing a forward looking 'Horizon Scan' research agenda for smart consumption, driven by the Social Sciences and Humanities (SSH). Reflecting on an extensive systematic Delphi Method exercise surveying over 70 SSH scholars from various institutional settings across Europe, we highlight what SSH scholars see as future directions for smart consumption research. Building from seven thematic areas (under which are grouped 100 SSH research questions), the study identifies three key 'shifts' this new smart research agenda represents, when compared to previous agendas: (1) From technological inevitability to political choice, highlighting the need for a wider political critique, with the potential to open up discussions of the instrumentalisation of smart research; (2) From narrow representation to diverse inclusion, moving beyond the shortcomings of current discourses for engaging marginalised communities; and (3) From individual consumers to interconnected citizens, reframing smart consumption to offer a broader model of social change and governance. Social Sciences and Humanities scholarship is essential to address these shifts in meaningful (rather than tokenistic) ways. This agenda and the shifts it embodies represent key tools to enable better interdisciplinary working between SSH and teams from the technical and natural sciences.Ministry of Education, Youth and Sports of the Czech Republic DKRVO, (RP/CPS/2022/005); Horizon 2020 Framework Programme, H2020; European Commission, EC; Horizon 2020, (826025)European Union [826025]; Ministry of Education, Youth and Sports of the Czech Republic DKRVO [RP/CPS/2022/005

    Shifts in the smart research agenda? 100 priority questions to accelerate sustainable energy futures

    Get PDF
    Energy transitions are at the top of global agendas in response to the growing challenges of climate change and international conflict, with the EU positioning itself as playing a pivotal role in addressing climate risks and sustainability imperatives. European energy transition policies identify ‘smart consumption’ as a key element of these efforts, which have previously been explored from a predominantly technical perspective thus often failing to identify or address fundamental interlinkages with social systems and consequences. This paper aims to contribute to interdisciplinary energy research by analysing a forward looking ‘Horizon Scan’ research agenda for smart consumption, driven by the Social Sciences and Humanities (SSH). Reflecting on an extensive systematic Delphi Method exercise surveying over 70 SSH scholars from various institutional settings across Europe, we highlight what SSH scholars see as future directions for smart consumption research. Building from seven thematic areas (under which are grouped 100 SSH research questions), the study identifies three key ‘shifts’ this new smart research agenda represents, when compared to previous agendas: (1) From technological inevitability to political choice, highlighting the need for a wider political critique, with the potential to open up discussions of the instrumentalisation of smart research; (2) From narrow representation to diverse inclusion, moving beyond the shortcomings of current discourses for engaging marginalised communities; and (3) From individual consumers to interconnected citizens, reframing smart consumption to offer a broader model of social change and governance. Social Sciences and Humanities scholarship is essential to address these shifts in meaningful (rather than tokenistic) ways. This agenda and the shifts it embodies represent key tools to enable better interdisciplinary working between SSH and teams from the technical and natural sciences

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    corecore