180 research outputs found

    Formation of the double helix: a mutational study

    Get PDF
    To investigate the mechanisms by which oligonucleotides hybridize to target molecules, the binding of two oligodeoxynucleotide probes to RNA targets was measured over a broad range of temperatures. Mutations were then scanned across each DNA/RNA hybrid to map, at single base resolution, sequences important for hybridization. Despite being unrelated in sequence, each hybrid formed by a similar mechanism. In the absence of secondary structure, two stretches of bases, termed nucleation regions, cooperated with one another by a looping mechanism to nucleate hybridization. Mutations inside each nucleation region strongly decreased hybridization rates, even at temperatures well below the melting temperature (Tm) of the hybridized duplex. Surprisingly, nucleation regions were detected in a RNA target but not a corresponding DNA target. When either nucleation region was sequestered in secondary structure, the hybridization rate fell and the mechanism of hybridization changed. Single-stranded bases within the nucleation region of the probe and target first collided to form a double helix. If sufficiently G + C rich, the double helix then propagated throughout the oligonucleotide by a strand invasion process. On the basis of these results, general mechanisms for the hybridization of oligonucleotides to complementary and mutant targets are proposed

    Muscle Mitochondrial ATP Synthesis and Glucose Transport/Phosphorylation in Type 2 Diabetes

    Get PDF
    BACKGROUND: Muscular insulin resistance is frequently characterized by blunted increases in glucose-6-phosphate (G-6-P) reflecting impaired glucose transport/phosphorylation. These abnormalities likely relate to excessive intramyocellular lipids and mitochondrial dysfunction. We hypothesized that alterations in insulin action and mitochondrial function should be present even in nonobese patients with well-controlled type 2 diabetes mellitus (T2DM). METHODS AND FINDINGS: We measured G-6-P, ATP synthetic flux (i.e., synthesis) and lipid contents of skeletal muscle with (31)P/(1)H magnetic resonance spectroscopy in ten patients with T2DM and in two control groups: ten sex-, age-, and body mass-matched elderly people; and 11 younger healthy individuals. Although insulin sensitivity was lower in patients with T2DM, muscle lipid contents were comparable and hyperinsulinemia increased G-6-P by 50% (95% confidence interval [CI] 39%–99%) in all groups. Patients with diabetes had 27% lower fasting ATP synthetic flux compared to younger controls (p = 0.031). Insulin stimulation increased ATP synthetic flux only in controls (younger: 26%, 95% CI 13%–42%; older: 11%, 95% CI 2%–25%), but failed to increase even during hyperglycemic hyperinsulinemia in patients with T2DM. Fasting free fatty acids and waist-to-hip ratios explained 44% of basal ATP synthetic flux. Insulin sensitivity explained 30% of insulin-stimulated ATP synthetic flux. CONCLUSIONS: Patients with well-controlled T2DM feature slightly lower flux through muscle ATP synthesis, which occurs independently of glucose transport /phosphorylation and lipid deposition but is determined by lipid availability and insulin sensitivity. Furthermore, the reduction in insulin-stimulated glucose disposal despite normal glucose transport/phosphorylation suggests further abnormalities mainly in glycogen synthesis in these patients

    Forest microclimates and climate change: importance, drivers and future research agenda

    Get PDF
    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.Peer reviewe

    Der König als Krieger. Zum Verhältnis von Königtum und Krieg im Mittelalter. Beiträge der Tagung des Zentrums für Mittelalterstudien der Otto-Friedrich-Universität Bamberg (13. – 15. März 2013)

    Get PDF
    Der König als Krieger – Zum Verhältnis von Königtum und Krieg im Mittelalter Kriegshandlungen waren in der mittelalterlichen Gesellschaft allgegenwärtig und oftmals eng mit dem Königtum verknüpft. Nahezu alle Könige des Mittelalters haben während ihrer Regierungszeit militärische Aktionen durchgeführt. Dabei agierten sie als Kriegsherren, militärische Anführer und immer wieder auch als aktive Kämpfer. Diese Rollen werden in den Quellen oft genug betont, etwa durch den gängigen Topos einer mitreißenden Rede unmittelbar vor der Schlacht. Gleichzeitig waren sich die Zeitgenossen jedoch der Bedeutung der persönlichen Unversehrtheit des Monarchen vollauf bewusst, womit ein Spannungsmoment zwischen der Herrschertugend der Tapferkeit (fortitudo) und der Raison des Königsamtes gegeben war. Der Sammelband analysiert anhand von verschiedenen historischen Beispielen, welche Bedeutung die Kriegsteilnahme für das mittelalterliche Herrschaftsverständnis hatte, wann, wie und in welchem Kontext die Rolle des Königs als Feldherr oder Kämpfer besonders hervorgehoben, wann sie unterdrückt oder kritisiert wurde

    Longitudinal Diffusion Tensor Imaging Resembles Patterns of Pathology Progression in Behavioral Variant Frontotemporal Dementia (bvFTD)

    Get PDF
    Objective: Recently, the characteristic longitudinal distribution pattern of the underlying phosphorylated TDP-43 (pTDP-43) pathology in the behavioral variant of frontotemporal dementia (bvFTD) excluding Pick's disease (PiD) across specific brain regions was described. The aim of the present study was to investigate whether in vivo investigations of bvFTD patients by use of diffusion tensor imaging (DTI) were consistent with these proposed patterns of progression. Methods: Sixty-two bvFTD patients and 47 controls underwent DTI in a multicenter study design. Of these, 49 bvFTD patients and 34 controls had a follow-up scan after ~12 months. Cross-sectional and longitudinal alterations were assessed by a two-fold analysis, i.e., voxelwise comparison of fractional anisotropy (FA) maps and a tract of interest-based (TOI) approach, which identifies tract structures that could be assigned to brain regions associated with disease progression. Results: Whole brain-based spatial statistics showed white matter alterations predominantly in the frontal lobes cross-sectionally and longitudinally. The TOIs of bvFTD neuroimaging stages 1 and 2 (uncinate fascicle—bvFTD pattern I; corticostriatal pathway—bvFTD pattern II) showed highly significant differences between bvFTD patients and controls. The corticospinal tract-associated TOI (bvFTD pattern III) did not differ between groups, whereas the differences in the optic radiation (bvFTD pattern IV) reached significance. The findings in the corticospinal tract were due to a “dichotomous” behavior of FA changes there. Conclusion: Longitudinal TOI analysis demonstrated a pattern of white matter pathways alterations consistent with patterns of pTDP-43 pathology

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Fil: Keret, Ophir. University of California; Estados UnidosFil: Staffaroni, Adam M.. University of California; Estados UnidosFil: Ringman, John M.. University of Southern California; Estados UnidosFil: Cobigo, Yann. University of California; Estados UnidosFil: Goh, Sheng Yang M.. University of California; Estados UnidosFil: Wolf, Amy. University of California; Estados UnidosFil: Allen, Isabel Elaine. University of California; Estados UnidosFil: Salloway, Stephen. Brown University; Estados UnidosFil: Chhatwal, Jasmeer. Harvard Medical School; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Reyes Dumeyer, Dolly. Columbia University; Estados UnidosFil: Bateman, Randal J.. University of Washington; Estados UnidosFil: Benzinger, Tammie L.S.. University of Washington; Estados UnidosFil: Morris, John C.. University of Washington; Estados UnidosFil: Ances, Beau M.. University of Washington; Estados UnidosFil: Joseph Mathurin, Nelly. University of Washington; Estados UnidosFil: Perrin, Richard J.. University of Washington; Estados UnidosFil: Gordon, Brian A.. University of Washington; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; AustraliaFil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; AustraliaFil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; AustraliaFil: Villemagne, Victor L.. Austin Health; AustraliaFil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Fulham, Michael. Royal Prince Alfred Hospital; AustraliaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentin

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer\u27s disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer\u27s disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score\u27s predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests.

    Get PDF
    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 265171.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1110

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-& beta;(A & beta;) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A & beta;plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A & beta;plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A & beta;and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A & beta;and tau. Proteomic analysis of cerebrospinal fluid from individuals with autosomal dominant Alzheimer's disease reveals how this complex and chronic disease evolves over many decades
    corecore