2,183 research outputs found

    Received signal strength–based indoor localization using a robust interacting multiple model–extended Kalman filter algorithm

    Get PDF
    Due to the vast increase in location-based services, currently there exists an actual need of robust and reliable indoor localization solutions. Received signal strength localization is widely used due to its simplicity and availability in most mobile devices. The received signal strength channel model is defined by the propagation losses and the shadow fading. In real-life applications, these parameters might vary over time because of changes in the environment. Thus, to obtain a reliable localization solution, they have to be sequentially estimated. In this article, the problem of tracking a mobile node by received signal strength measurements is addressed, simultaneously estimating the model parameters. Particularly, a two-slope path loss model is assumed for the received signal strength observations, which provides a more realistic representation of the propagation channel. The proposed methodology considers a parallel interacting multiple model–based architecture for distance estimation, which is coupled with the on-line estimation of the model parameters and the final position determination via Kalman filtering. Numerical simulation results in realistic scenarios are provided to support the theoretical discussion and to show the enhanced performance of the new robust indoor localization approach. Additionally, experimental results using real data are reported to validate the technique

    RITA: a 1U multi-sensor Earth observation payload for the AlainSat-1

    Get PDF
    The Remote sensing and Interference detector with radiomeTry and vegetation Analysis (RITA) is one of the Remote Sensing payloads selected as winners of the 2nd GRSS Student Grand Challenge in 2019, to fly on board of the 3U AlainSat-1. This CubeSat is being developed by the National Space Science and Technology Center (NSSTC), United Arab Emirates University. RITA has been designed as an academic mission, which brings together students from different backgrounds in a joint effort to apply very distinct sensors in an Earth Observation mission, fusing their results to obtain higher-accuracy measurements. The main payload used in RITA is a Total Power Radiometer such as the one on board the FSSCat mission. With these radiometric measurements, soil moisture and ice thickness will be obtained. To better characterize the extensive Radio-Frequency Interferences received by EO satellites in protected bands, several RFI Detection and Classification algorithms will be included to generate a worldwide map of RFI. As a novel addition to the 3Cat family of satellites and payloads, a hyper-spectral camera with 25 bands ranging from 600 to 975 nm will be used to obtain several indexes related to vegetation. By linking these measurements with the soil moisture obtained from the MWR, pixel downscaling can be attempted. Finally, a custom- developed LoRa transceiver will be included to provide a multi-level approach to in-situ sensors: On-demand executions of the other payloads will be able to be triggered from ground sensors if necessary, as well as simple reception of other measurements that will complement the ones obtained on the satellite. The antennas for both the MWR and the LoRa experiments have been developed in-house, and will span the entirety of one of the 3U sides of the satellite. In this work, the latest development advances will be presented, together with an updated system overview and information about the operations that will be conducted. Results obtained from the test campaign are also presented in the conference

    Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors

    Get PDF
    We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8¿¿aF¿Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4¿¿nm¿Hz-1/2 in displacement and within 83 and 170¿¿nrad¿Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.Peer ReviewedPostprint (author's final draft

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion

    Surface indicators are correlated with soil multifunctionality in global drylands

    Get PDF
    Multiple ecosystem functions need to be considered simultaneously to manage and protect the several ecosystem services that are essential to people and their environments. Despite this, cost effective, tangible, relatively simple and globally relevant methodologies to monitor in situ soil multifunctionality, that is, the provision of multiple ecosystem functions by soils, have not been tested at the global scale. We combined correlation analysis and structural equation modelling to explore whether we could find easily measured, field-based indicators of soil multifunctionality (measured using functions linked to the cycling and storage of soil carbon, nitrogen and phosphorus). To do this, we gathered soil data from 120 dryland ecosystems from five continents. Two soil surface attributes measured in situ (litter incorporation and surface aggregate stability) were the most strongly associated with soil multifunctionality, even after accounting for geographic location and other drivers such as climate, woody cover, soil pH and soil electric conductivity. The positive relationships between surface stability and litter incorporation on soil multifunctionality were greater beneath the canopy of perennial vegetation than in adjacent, open areas devoid of vascular plants. The positive associations between surface aggregate stability and soil functions increased with increasing mean annual temperature. Synthesis and applications. Our findings demonstrate that a reduced suite of easily measured in situ soil surface attributes can be used as potential indicators of soil multifunctionality in drylands world-wide. These attributes, which relate to plant litter (origin, incorporation, cover), and surface stability, are relatively cheap and easy to assess with minimal training, allowing operators to sample many sites across widely varying climatic areas and soil types. The correlations of these variables are comparable to the influence of climate or soil, and would allow cost-effective monitoring of soil multifunctionality under changing land-use and environmental conditions. This would provide important information for evaluating the ecological impacts of land degradation, desertification and climate change in drylands world-wide.Fil: Eldridge, David J.. University of New South Wales; AustraliaFil: Delgado Baquerizo, Manuel. Universidad Rey Juan Carlos; EspañaFil: Quero, José L.. Universidad de Córdoba; EspañaFil: Ochoa, Victoria. Universidad Rey Juan Carlos; España. Universidad de Alicante; EspañaFil: Gozalo, Beatriz. Universidad Rey Juan Carlos; España. Universidad de Alicante; EspañaFil: García Palacios, Pablo. Universidad Rey Juan Carlos; EspañaFil: Escolar, Cristina. Universidad Rey Juan Carlos; EspañaFil: García Gómez, Miguel. Universidad Politécnica de Madrid; EspañaFil: Prina, Aníbal. Universidad Nacional de La Pampa; ArgentinaFil: Bowker, Mathew A.. Northern Arizona University; Estados UnidosFil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Castro, Ignacio. Universidad Experimental Simón Rodríguez; VenezuelaFil: Cea, Alex. Universidad de La Serena; ChileFil: Derak, Mchich. No especifíca;Fil: Espinosa, Carlos I.. Universidad Técnica Particular de Loja; EcuadorFil: Florentino, Adriana. Universidad Central de Venezuela; VenezuelaFil: Gaitán, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento de Tecnología; ArgentinaFil: Gatica, Mario Gabriel. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Gómez González, Susana. Universidad de Cádiz; EspañaFil: Ghiloufi, Wahida. Université de Sfax; TúnezFil: Gutierrez, Julio R.. Universidad de La Serena; ChileFil: Guzman, Elizabeth. Universidad Técnica Particular de Loja; EcuadorFil: Hernández, Rosa M.. Universidad Experimental Simón Rodríguez; VenezuelaFil: Hughes, Frederic M.. Universidade Estadual de Feira de Santana; BrasilFil: Muiño, Walter. Universidad Nacional de La Pampa; ArgentinaFil: Monerris, Jorge. No especifíca;Fil: Ospina, Abelardo. Universidad Central de Venezuela; VenezuelaFil: Ramírez, David A.. International Potato Centre; PerúFil: Ribas Fernandez, Yanina Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Romão, Roberto L.. Universidade Estadual de Feira de Santana; BrasilFil: Torres Díaz, Cristian. Universidad del Bio Bio; ChileFil: Koen, Terrance B.. No especifíca;Fil: Maestre, Fernando T.. Universidad Rey Juan Carlos; España. Universidad de Alicante; Españ

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke

    Get PDF
    During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke. Ibanez et al. perform a multi-ancestry meta-analysis to investigate the genetic architecture of early stroke outcomes. Two of the eight genome-wide significant loci identified-ADAM23 and GRIA1-are involved in synaptic excitability, suggesting that excitotoxicity contributes to neurological instability after ischaemic stroke.Peer reviewe

    Desired weight loss and its association with health, health behaviors and perceptions in an adult population with weight excess: One-year follow-up

    Full text link
    Background: Metabolic syndrome (MetS) worsens quality of life and increases mortality. Dissatisfaction with weight in patients with MetS may modify the effect of lifestyle interventions to achieve changes in health-related behaviors. Objective: To assess 1-year changes in cardiovascular risk scores, self-perceived general health and health-related behaviors according to observed changes in desired weight loss during the first year of intervention in a large cardiovascular prevention trial. Design: Prospective analysis of the PREDIMED-PLUS trial, including 5,499 adults (55-75 years old) with overweight or obesity at baseline. Methods: The desired weight loss was the difference between ideal and measured weight. Tertiles of change in desired weight loss (1 year vs. baseline) were defined by the following cut-off points: >= 0.0 kg (T1, n = 1,638); 0.0 to -4.0 kg (T2, n = 1,903); <=-4.0 kg (T3, n = 1,958). A food frequency questionnaire assessed diet and the Minnesota-REGICOR questionnaire assessed physical activity. The Framingham equation assessed cardiovascular risks. The changes in the severity of MetS were also assessed. The Beck Depression Inventory assessed depressive symptoms and the SF-36 assessed health-related quality of life. Data were analyzed using general linear models. Results: BMI decreased at T2 and T3 (T1: 0.3, T2: -0.7, T3: -1.9). The most significant improvement in diet quality was observed at T3. Cardiovascular risk decreased at T2 and T3. Mean reductions in MetS severity score were: -0.02 at T1, -0.39 at T2 and -0.78 at T3. The perception of physical health increases in successive tertiles. Conclusions: In older adults with MetS, more ambitious desired weight loss goals were associated with improvements in diet, cardiovascular health and perceived physical health during the first year of a healthy lifestyle intervention programme. Weight dissatisfaction needs to be considered by health professionals
    corecore