138 research outputs found

    Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation

    Get PDF
    Purpose: Colorectal tumors (CRC) with microsatellite instability (MSI) show resistance to chemotherapy with 5-fluorouracil (5-FU), the most widely used pharmacological drug for CRC treatment. The aims of this study were to test the ability of quercetin (Q) and luteolin (L) to increase sensitivity of MSI CRC cells to 5-FU and characterize the dependence of the effects on cells´ p53 status. Methods: Two MSI human CRC derived cell lines were used, CO115 wild-type (wt) for p53 and HCT15 that harbors a p53 mutation. Apoptosis induction in these cells by 5-FU, Q and L alone and in combinations were evaluated by TUNEL and western. The dependence on p53 of the effects was confirmed by small interference RNA (siRNA) in CO115 cells and in MSI HCT116 wt and p53 knockout cells. Results: CO115 p53-wt cells are more sensitive to 5-FU than the p53 mutated HCT15. The combination treatment of 5-FU with L and Q increased apoptosis with a significant effect for Q in CO115. Both flavonoids increased p53 expression in both cell lines, an effect particularly remarkable for Q. The significant apoptotic enhancement in CO115 incubated with Q plus 5-FU involved the activation of the apoptotic mitochondrial pathway. Importantly, knockdown of p53 by siRNA in CO115 cells and p53 knockout in HCT116 cells totally abrogated apoptosis induction, demonstrating the dependence of the effect on p53 modulation by Q. Conclusion: This study suggests the potential applicability of these phytochemicals for enhancement 5-FU efficiency in MSI CRC therapy, especially Q in p53 wt tumors.CPRX was supported by the Foundation for Science and Technology (FCT), Portugal, through the grant SFRH/BD/27524/2006 and the work was supported by the FCT research grant PTDC/AGR-AAM/70418/2006

    5-Fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency

    Get PDF
    BACKGROUND: Colorectal cancer is (CRC) one of the commonest cancers and its therapy is still based on few drugs. Currently, no biological criteria are used to choose the most effective of the established drugs for treatment. METHODS: A panel of 77 CRC cell lines was tested for sensitivity to 5-fluorouracil (5FU) using the SRB assay. The responses were grouped into three categories and correlated with genetic changes in the cell lines. RESULTS: The strongest and most clearcut correlation was between 5-fluorouracil response and replication error status (mismatch repair deficiency). All the other significant correlations (loss of heterozygosity for DCC and mutations in TGFbIIR) are secondary to the association with replication error status. INTERPRETATION AND CONCLUSION: Our findings validate previous analyses based mainly on clinical data, and indicate that replication error status could be a useful guide to 5-fluorouracil-based CRC therapy. Essentially, all previously described correlations with 5FU response are secondary to the association with replication error status

    Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level

    Full text link
    [EN] Background: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut. Results: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1 beta (il1 beta, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1 beta, cox2 and igm). However, major histological changes in gut were not detected. Conclusions: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 beta, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.The research has been partially funded by Vicerrectorat d'Investigacio, Innovacio i Transferencia of the Universitat Politecnica de Valencia, which belongs to the project Aquaculture feed without fishmeal (SP20120603). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Estruch-Cucarella, G.; Collado, MC.; Monge-Ortiz, R.; Tomas-Vidal, A.; Jover Cerdá, M.; Peñaranda, D.; Perez Martinez, G.... (2018). Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research. 14. https://doi.org/10.1186/s12917-018-1626-6S14Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.Martínez-Llorens S, Moñino AV, Vidal AT, Salvador VJM, Pla Torres M, Jover Cerdá M, et al. Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquac Res. 2007;38(1):82–90.Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 2008;285:146–58.Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP. Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquac Res. 2008;39(9):970–8.Kissil G, Lupatsch I. Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus Aurata L. Isr J Aquac – Bamidgeh. 2004;56(3):188–99.Monge-Ortíz R, Martínez-Llorens S, Márquez L, Moyano FJ, Jover-Cerdá M, Tomás-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr. 2016;70(2):155–72.Santigosa E, Sánchez J, Médale F, Kaushik S, Pérez-Sánchez J, Gallardo MA. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 2008;282:68–74.Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, et al. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture. 2011;317:146–54.Sitjá-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture. 2005;249:387–400.Martínez-Llorens S, Baeza-Ariño R, Nogales-Mérida S, Jover-Cerdá M, Tomás-Vidal A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture. 2012;338-341:124–33.Baeza-Ariño R, Martínez-Llorens S, Nogales-Mérida S, Jover-Cerda M, Tomás-Vidal A. Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrates. Aquac Res. 2014;47(2):460–71.Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, et al. Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA gene. PLoS One. 2015;10(8):e0136389. https://doi.org/10.1371/journal.pone.0136389 .Fekete SG, Kellems RO. Interrelationship of feeding with immunity and parasitic infection: a review. Vet Med. 2007;52(4):131–43.Kiron V. Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol. 2012;173(1–2):111–33.Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol. 2017;33:539–55.Cerezuela R, Meseguer J, Esteban MÁ. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013;34(3):843–8.Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl O-TA, et al. Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim Feed Sci Technol. 2014;198:203–14.Estensoro I, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J, Sitjá-Bobadilla A. Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish Shellfish Immunol. 2012;33(2):401–10.Pérez-Sánchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, Sitjà-Bobadilla A. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One. 2013;8(6):e65457.Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ. Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2013;35(3):883–9.Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, et al. Effects of dietary NEXT ENHANCE ® 150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2015;44:117–28.Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One. 2016;11(11):1–21.Torrecillas S, Caballero MJ, Mompel D, Montero D, Zamorano MJ, Robaina L, et al. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. Fish Shellfish Immunol. 2017;67:302–11.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3(6):1101–8.Omnes MH, Silva FCP, Moriceau J, Aguirre P, Kaushik S, Gatesoupe F-J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac Nutr. 2015;21:223–33.Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197–227.Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–79.Kader MA, Bulbul M, Koshio S, Ishikawa M, Yokoyama S, Nguyen BT, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350-353:109–16.Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture. 2004;232(1–4):493–510.Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture. 2010;308(3–4):136–44.Mai K, Li H, Ai Q, Duan Q, Xu W, Zhang C, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac Res. 2006;37(11):1063–9.Peres H, Oliva-Teles A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture. 2009;296(1–2):81–6.Cho CY, Slinger SJ, Bayley HS. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol Part B. 1982;73(1):25–41.Venou B, Alexis MN, Fountoulaki E, Haralabous J. Effects of extrusion and inclusion level of soybean meal on diet digestibility , performance and nutrient utilization of gilthead sea bream ( Sparus aurata ). Aquaculture. 2006;261:343–56.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, et al. PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus. 2013;2:17.Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–82.Adamidou S, Nengas I, Henry M, Grigorakis K, Rigos G, Nikolopoulou D, et al. Growth, feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture. 2009;293(3–4):263–71.Daprà F, Gai F, Costanzo MT, Maricchiolo G, Micale V, Sicuro B, et al. Rice protein-concentrate meal as a potential dietary ingredient in practical diets for blackspot seabream Pagellus bogaraveo: a histological and enzymatic investigation. J Fish Biol. 2009;74(4):773–89.Overland M, Sorensen M, Storebakken T, Penn M, Krogdahl A, Skrede A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 2009;288(3–4):305–11.Penn MH, Bendiksen EA, Campbell P, Krogdahl AS. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture. 2011;310(3–4):267–73.Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One. 2013;8(7):1–10.Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of Gilthead Sea bream, Sparus aurata. J World Aquac Soc. 2015;46(2):115–28.Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2017;64:111–21.Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics. 2012;13(1):470.Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, et al. Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform fish. Front Immunol. 2016;7. Article 637. https://doi.org/10.3389/fimmu.2016.00637 .Salinas I, Zhang Y, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol. 2011;35(12):1346–65.Krogdahl A, Bakke-McKellep AM, Roed KH, Baeverfjord G. Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr. 2000;6:77–84.Chasiotis H, Effendi JC, Kelly SP. Occludin expression in goldfish held in ion-poor water. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(2):145–54.Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011;56(4):1020–7.Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007;2(6):365–7.Tort L. Stress and immune modulation in fish. Dev Comp Immunol [internet]. Elsevier Ltd. 2011;35(12):1366–75.Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.Burrells C, Williams PD, Southgate PJ, Crampton VO. Immunological , physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet Immunol Immunopathol. 1999;72:277–88.Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl Å, Bakke AM. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 2013;34(2):599–609.Esteban MÁ, Cuesta A, Ortuño J, Meseguer J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream ( Sparus aurata L .) innate immune system. Fish Shellfish Immunol. 2001;11:303–15.Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture. 1999;172(3–4):291–9.Olsen RE, Myklebust R, Ringø E, Mayhew TM. The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem. 2000;22(3):207–16.Heikkinen J, Vielma J, Kemiläinen O, Tiirola M, Eskelinen P, Kiuru T, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;261(1):259–68.Krogdahl A, Bakke-McKellep AM, Baeverfjord G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr. 2003;9:361–71.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MA. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol. 2013;34(5):1063–70.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350(3):477–89.Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(suppl):1131S–41S.Kokou F, Rigos G, Henry M, Kentouri M, Alexis M. Growth performance, feed utilization and non-specific immune response of gilthead sea bream (Sparus aurata L.) fed graded levels of a bioprocessed soybean meal. Aquaculture. 2012;364-365:74–81

    Does clinical examination aid in the diagnosis of urinary tract infections in women? A systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinicians should be aware of the diagnostic values of various symptoms, signs and antecedents. This information is particularly important in primary care settings, where sophisticated diagnostic approaches are not always feasible. The aim of the study is to determine the probability that various symptoms, signs, antecedents and tests predict urinary tract infection (UTI) in women.</p> <p>Methods</p> <p>We conducted a systematic search of the MEDLINE and EMBASE databases to identify articles published in all languages through until December 2008. We particularly focused on studies that examined the diagnostic accuracy of at least one symptom, sign or patient antecedent related to the urinary tract. We included studies where urine culture, a gold standard, was preformed by primary care providers on female subjects aged at least 14 years. A meta-analysis of the likelihood ratio was performed to assess variables related to the urinary tract symptoms.</p> <p>Results</p> <p>Of the 1, 212 articles identified, 11 met the selection criteria. Dysuria, urgency, nocturia, sexual activity and urgency with dysuria were weak predictors of urinary tract infection, whereas increases in vaginal discharge and suprapubic pain were weak predictors of the absence of infection. Nitrites or leukocytes in the dipstick test are the only findings that clearly favored a diagnosis of UTI.</p> <p>Conclusions</p> <p>Clinical findings do not aid in the diagnosis of UTI among women who present with urinary symptoms. Vaginal discharge is a weak indicator of the absence of infection. The urine dipstick test was the most reliable tool for detecting UTI.</p

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    corecore