43 research outputs found

    High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control

    Get PDF
    To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR’s mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Differences in levels of phosphatidylinositols in healthy and stable Coronary Artery Disease subjects revealed by HILIC-MRM method with SERRF normalization.

    No full text
    Quantification of endogenous biomarkers in clinical studies requires careful evaluation of a number of assay performance parameters. Comparisons of absolute values from several clinical studies can enable retrospective analyses further elucidating the biology of a given biomarker across various study populations. We characterized the performance of a highly multiplex bioanalytical method for quantification of phosphatidylinositols (PI). Hydrophilic interaction chromatography (HILIC) and multiple reaction monitoring (MRM) were employed for targeted multiplex quantification. Odd-chain PI species that are not normally present in human plasma were utilized as surrogate analytes (SA) to assess various assay performance parameters and establish a definitive dynamic linear range for PI lipids. To correct for batch effects, Systematic Error Removal using Random Forest (SERRF) normalization algorithm was employed and used to bridge raw values between two clinical studies, enabling quantitative comparison of their absolute values. A high throughput method was developed, qualified, transferred to an automation platform and applied to sample testing in two clinical trials in healthy volunteers (NCT03001297) and stable Coronary Artery Disease (CAD, NCT03351738) subjects. The method demonstrated acceptable precision and accuracy (±30%) over linear range of 1-1000 nM for SA and 8-fold dilutional linearity for endogenous PI. We determined that mean-adjusted average QC performed best for normalization using SERRF. The comparison of two studies revealed that healthy subject levels of PI are consistently higher across PI species compared to CAD subjects identifying a potential lipid biomarker to be explored in future studies

    Discovery of a Novel Site Regulating Glucokinase Activity following Characterization of a New Mutation Causing Hyperinsulinemic Hypoglycemia in Humans*

    No full text
    Type 2 diabetes is a global problem, and current ineffective therapeutic strategies pave the way for novel treatments like small molecular activators targeting glucokinase (GCK). GCK activity is fundamental to beta cell and hepatocyte glucose metabolism, and heterozygous activating and inactivating GCK mutations cause hyperinsulinemic hypoglycemia (HH) and maturity onset diabetes of the young (MODY) respectively. Over 600 naturally occurring inactivating mutations have been reported, whereas only 13 activating mutations are documented to date. We report two novel GCK HH mutations (V389L and T103S) at residues where MODY mutations also occur (V389D and T103I). Using recombinant proteins with in vitro assays, we demonstrated that both HH mutants had a greater relative activity index than wild type (6.0 for V389L, 8.4 for T103S, and 1.0 for wild type). This was driven by an increased affinity for glucose (S0.5, 3.3 ± 0.1 and 3.5 ± 0.1 mm, respectively) versus wild type (7.5 ± 0.1 mm). Correspondingly, the V389D and T103I MODY mutants had markedly reduced relative activity indexes (<0.1). T103I had an altered affinity for glucose (S0.5, 24.9 ± 0.6 mm), whereas V389D also exhibited a reduced affinity for ATP and decreased catalysis rate (S0.5, 78.6 ± 4.5 mm; ATPKm, 1.5 ± 0.1 mm; Kcat, 10.3 ± 1.1s−1) compared with wild type (ATPKm, 0.4 ± <0.1; Kcat, 62.9 ± 1.2). Both Thr-103 mutants showed reduced inhibition by the endogenous hepatic inhibitor glucokinase regulatory protein. Molecular modeling demonstrated that Thr-103 maps to the allosteric activator site, whereas Val-389 is located remotely to this position and all other previously reported activating mutations, highlighting α-helix 11 as a novel region regulating GCK activity. Our data suggest that pharmacological manipulation of GCK activity at locations distal from the allosteric activator site is possible
    corecore