12 research outputs found

    Direct measurement of protein-protein interactions by FLIM-FRET at UV laser-induced DNA damage sites in living cells

    Get PDF
    Protein-protein interactions are essential to ensure timely and precise recruitment of chromatin remodellers and repair factors to DNA damage sites. Conventional analyses of protein-protein interactions at a population level may mask the complexity of interaction dynamics, highlighting the need for a method that enables quantification of DNA damage-dependent interactions at a single-cell level. To this end, we integrated a pulsed UV laser on a confocal fluorescence lifetime imaging (FLIM) microscope to induce localized DNA damage. To quantify protein-protein interactions in live cells, we measured Förster resonance energy transfer (FRET) between mEGFP- and mCherry-tagged proteins, based on the fluorescence lifetime reduction of the mEGFP donor protein. The UV-FLIM-FRET system offers a unique combination of real-time and single-cell quantification of DNA damage-dependent interactions, and can distinguish between direct protein-protein interactions, as opposed to those mediated by chromatin proximity. Using the UV-FLIM-FRET system, we show the dynamic changes in the interaction between poly(ADP-ribose) polymerase 1, amplified in liver cancer 1, X-ray repair cross-complementing protein 1 and tripartite motif containing 33 after DNA damage. This new set-up complements the toolset for studying DNA damage response by providing single-cell quantitative and dynamic information about protein-protein interactions at DNA damage sites

    The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo

    Full text link
    The LEM domain (for lamina-associated polypeptide, emerin, MAN1 domain) defines a group of nuclear proteins that bind chromatin through interaction of the LEM motif with the conserved DNA crosslinking protein, barrier-to-autointegration factor (BAF). Here, we describe a LEM protein annotated in databases as 'Ankyrin repeat and LEM domain-containing protein 1' (Ankle1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. Although most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus. Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 is an unusual LEM protein with a GIY-YIG-type endonuclease activity in higher eukaryotes

    Detergent-Salt Resistance of LAP2α in Interphase Nuclei and Phosphorylation-Dependent Association with Chromosomes Early in Nuclear Assembly Implies Functions in Nuclear Structure Dynamics

    No full text
    Lamina-associated polypeptide (LAP) 2 of the inner nuclear membrane (now LAP2β) and LAP2α are related proteins produced by alternative splicing, and contain a common 187 amino acid N-terminal domain. We show here that, unlike LAP2β, LAP2α behaved like a nuclear non-membrane protein in subcellular fractionation studies and was localized throughout the nuclear interior in interphase cells. It co-fractionated with LAP2β in nuclear lamina/matrix-enriched fractions upon extraction of nuclei with detergent, salt and nucleases. During metaphase LAP2α dissociated from chromosomes and became concentrated around the spindle poles. Furthermore, LAP2α was mitotically phosphorylated, and phosphorylation correlated with increased LAP2α solubility upon extraction of cells in physiological buffers. LAP2α relocated to distinct sites around chromosomes at early stages of nuclear reassembly and intermediarily co-localized with peripheral lamin B and intranuclear lamin A structures at telophase. During in vitro nuclear assembly LAP2α was dephosphorylated and assembled into insoluble chromatin-associated structures, and recombinant LAP2α was found to interact with chromosomes in vitro. Some LAP2α may also associate with membranes prior to chromatin attachment. Altogether the data suggest a role of LAP2α in post-mitotic nuclear assembly and in the dynamic structural organization of the nucleus
    corecore