111 research outputs found

    Crop Insurance Changes in 2011

    Get PDF
    For a number of years the Risk Management Agency (RMA) of the United States Department of Agriculture (USDA) has been working with the crop insurance industry to streamline the crop insurance program for the major crops. The new Common Crop Insurance Policy, referred to as the COMBO Policy, is in effect beginning with crops harvested in 2011. Crops covered include corn, soybeans, grain sorghum, wheat, barley, cotton, rice, canola and sunflowers

    EC94-872-S Nebraska Crop Budgets

    Get PDF
    Resource Persons • Crops Budgeting Procedure • Prices Used for 1994 Panhandle • Gravity Irrigated Crops • Sugar Beets • Dry Edible Beans • Corn for Grain • Corn for Silage • Establish Alfatfa with Oats • Alfalfa Hay Gravity Irrigated • Center Pivot Irrigated Crops • Sugar Beets • Dry Edible Beans • Corn for Grain • Winter Wheat • Alfalfa Hay • Non-Irrigated Crops • Winter Wheat Stubble Much Fallow • Winter Wheat, Eco-Fallow (Chemical and Tillage Combination) • Sunflower, Wheat-Sunflower-Fallow Rotation • Millet, Wheat, Fallow, Millet, Fallow Southwest • Corn for Grain, Gravity Irrigated • Corn for Silage, Gravity Irrigated • Corn for Grain, Ditch Irrigated, Platte Valley • Corn for Grain, Ridge Planted, Gravity Irrigated • Corn for Grain, Center Pivot Irrigated, Fine Texture Soil • Corn for Grain, Center Pivot Irrigated, Sandy Soil • Pinto Beans, Center Pivot Irrigated • Soybeans, Center Pivot Irrigated • Fall Seed Alfalfa, Center Pivot Irrigated • Alfalfa Hay, Center Pivot Irrigated • Alfalfa Hay, Sub-Irrigated, Platte Valley • Fall Seed Grass, Center Pivot Irrigated • Pasture, Center Pivot Irrigated • Wheat, Center Pivot Irrigated • Wheat, Stubble Mulch Fallow • Wheat, Clean Till Fallow • Wheat, Continuous, Chemical Weed Control • Wheat, Followed by Corn, 3 Year Rotation, Eco-Fallow • Corn, Following Eco-Fallow Wheat • Grain Sorghum, Non-Irrigated • Grain Sorghum, Non-Irrigated, No-TUI Continuous • Cane Hay, Non-Irrigated North • Corn for Grain, Center Pivot Irrigated • Corn for Silage, Center Pivot Irrigated • Establish Alfalfa, Center Pivot Irrigated • Alfalfa Hay, Center Pivot Irrigated • Establish Grass, Center Pivot Irrigated • Pasture, Center Pivot Irrigated • Native Hay, Wet Meadow • Native Hay, Upland Central • Corn for Grain Center Pivot Irrigated • Corn for Silage Center Pivot Irrigated • Grain Sorghum for Grain, Limited Irrigation, Center Pivot • Corn for Grain, Gravity Irrigated • Corn for Silage Gravity Irrigated • Soybeans, Gravity Irrigated , • Establish Alfalfa, Gravity Irrigated • Alfalfa for Hay, Gravity Irrigated • Corn for Grain, Non-Irrigated • Corn for Grain, Eco-Fallow, Follows Wheat in 3 Year Rotation • Corn for Silage, Non-Irrigated • Grain Sorghum for Grain, Non-Irrigated • Grain Sorghum for Grain, Eco-Fallow, Follows Wheat in 3 Year Rotation • Grain Sorghum for Grain, Continuous, No Till, Non-Irrigated • Soybeans, Non-Irrigated • Wheat for Grain, Continuous Cropped, Non-Irrigated • Wheat for Grain, Continuous, No Till, Non-Irrigated • Wheat for Grain, Fallow Every Third Year • Establish Alfalfa, Non-Irrigated • Alfalfa for Hay, Non-Irrigated • Establish and Maintain Cover Crop on Set Aside Acres Northeast • Corn for Grain, Center Pivot Irrigated, Sandy Soils • Corn for Grain, Center Pivot Irrigated, Rolling Hills • Corn for Grain, Till-Plant, Rolling Hills • Soybeans, Non-Irrigated • Soybeans, Center Pivot Irrigated • Oats, Non-Irrigated 8 • Oats With Spring Alfalfa Seeding • Alfalfa Seeding • Establish Alfalfa, Sandy Soil, Fall Seeding • Alfalfa Hay, Large Round Baler • Alfalfa Hay Small Square Baler • East Central • Corn for Grain, Center Pivot Irrigated • Soybeans, Center Pivot Irrigated • Corn tor Grain, Non-Irrigated • No-Till Com in Soybean Residue • Grain Sorghum, Non-Irrigated • Soybeans, Non-Irrigated • Soybeans, After Corn Reduced Till • Wheat • Establish Alfalfa, Fall Seeded • Establish Alfalfa, Spring With Herbicide • Alfalfa Hay, Large Round Baler • Alfalfa Hay, Field Stacker • Oats, Non-Irrigated Southeast • Corn for Grain, Center Pivot Irrigated • Corn for Silage, Center Pivot Irrigated • Corn for Grain, Non-Irrigated • Grain Sorghum, Non-Irrigated • Forage Sorghum Silage, Non-Irrigated • Soybeans, Non-Irrigated • Wheat • Alfalfa Hay, Large Round Bale

    Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications

    Get PDF
    We present observations of the Type Ia supernovae (SNe) 1999M, 1999N, 1999Q, 1999S, and 1999U, at redshift z~0.5. They were discovered in early 1999 with the 4.0~m Blanco telescope at Cerro Tololo Inter-American Observatory by the High-z Supernova Search Team (HZT) and subsequently followed with many ground-based telescopes. SNe 1999Q and 1999U were also observed with the Hubble Space Telescope. We computed luminosity distances to the new SNe using two methods, and added them to the high-z Hubble diagram that the HZT has been constructing since 1995. The new distance moduli confirm the results of previous work. At z~0.5, luminosity distances are larger than those expected for an empty universe, implying that a ``Cosmological Constant,'' or another form of ``dark energy,'' has been increasing the expansion rate of the Universe during the last few billion years.Comment: 68 pages, 22 figures. Scheduled for the 01 February 2006 issue of Ap.J. (v637

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas

    Get PDF
    High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond

    The Eruption of the Candidate Young Star ASASSN-15qi

    Get PDF
    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The 3.5\sim 3.5 mag brightening in the VV band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from 10,000\sim10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H2_2 is detected in emission from vibrational levels as high as v=11v=11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling

    Correction: International Society of Sports Nutrition position stand: Nutrient timing

    Get PDF
    Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake
    corecore