82 research outputs found

    Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    Get PDF
    [EN] Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria x anahassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutaturn spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.Authors are grateful to Dr. JM Lopez-Aranda (IFAPA-Centro de Churriana) for providing micropropagated strawberry plants and to Nicolas Garcia-Caparros for technical assistance. Authors also want to thank Kevin M. Folta for his insightful comments on the paper. This work was supported by Junta de Andalucia, Spain [Proyectos de Excelencia P07-AGR-02482/P12-AGR-2174, and grants to Grupo-BIO278].Amil-Ruiz, F.; Garrido-Gala, J.; Gadea Vacas, J.; Blanco-Portales, R.; Munoz-Merida, A.; Trelles, O.; De Los Santos, B.... (2016). Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science. 7(1036). https://doi.org/10.3389/fpls.2016.01036S71036Acosta, I. F., & Farmer, E. E. (2010). Jasmonates. The Arabidopsis Book, 8, e0129. doi:10.1199/tab.0129Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4), 578-580. doi:10.1093/bioinformatics/btg455Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLoS ONE, 8(8), e70603. doi:10.1371/journal.pone.0070603Arroyo, F. T., Moreno, J., García-Herdugo, G., Santos, B. D. los, Barrau, C., Porras, M., … Romero, F. (2005). Ultrastructure of the early stages of Colletotrichum acutatum infection of strawberry tissues. Canadian Journal of Botany, 83(5), 491-500. doi:10.1139/b05-022Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556Aviv, D. H., Rustérucci, C., Iii, B. F. H., Dietrich, R. A., Parker, J. E., & Dangl, J. L. (2002). Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. The Plant Journal, 29(3), 381-391. doi:10.1046/j.0960-7412.2001.01225.xBak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., & Werck-Reichhart, D. (2011). Cytochromes P450. The Arabidopsis Book, 9, e0144. doi:10.1199/tab.0144Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., … von Koskull-DÖring, P. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29(4), 471-487. doi:10.1007/bf02712120Bhattacharjee, S. (2012). The Language of Reactive Oxygen Species Signaling in Plants. Journal of Botany, 2012, 1-22. doi:10.1155/2012/985298Birkenbihl, R. P., Diezel, C., & Somssich, I. E. (2012). Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection. Plant Physiology, 159(1), 266-285. doi:10.1104/pp.111.192641Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00170Casado-Díaz, A., Encinas-Villarejo, S., Santos, B. de los, Schilirò, E., Yubero-Serrano, E.-M., Amil-Ruíz, F., … Caballero, J.-L. (2006). Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 128(4), 633-650. doi:10.1111/j.1399-3054.2006.00798.xCharng, Y., Liu, H., Liu, N., Chi, W., Wang, C., Chang, S., & Wang, T. (2006). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiology, 143(1), 251-262. doi:10.1104/pp.106.091322Chung, S. H., Rosa, C., Scully, E. D., Peiffer, M., Tooker, J. F., Hoover, K., … Felton, G. W. (2013). Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences, 110(39), 15728-15733. doi:10.1073/pnas.1308867110Curry, K. J., Abril, M., Avant, J. B., & Smith, B. J. (2002). Strawberry Anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology®, 92(10), 1055-1063. doi:10.1094/phyto.2002.92.10.1055Debode, J., Van Hemelrijck, W., Baeyen, S., Creemers, P., Heungens, K., & Maes, M. (2009). Quantitative detection and monitoring ofColletotrichum acutatumin strawberry leaves using real-time PCR. Plant Pathology, 58(3), 504-514. doi:10.1111/j.1365-3059.2008.01987.xDempsey, D. A., & Klessig, D. F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17(9), 538-545. doi:10.1016/j.tplants.2012.05.011Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Doehlemann, G., Wahl, R., Horst, R. J., Voll, L. M., Usadel, B., Poree, F., … Kämper, J. (2008). Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. The Plant Journal, 56(2), 181-195. doi:10.1111/j.1365-313x.2008.03590.xDong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884bEl Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., … Bouarab, K. (2011). Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato. The Plant Cell, 23(6), 2405-2421. doi:10.1105/tpc.111.083394Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., … Caballero, J. L. (2009). Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. Journal of Experimental Botany, 60(11), 3043-3065. doi:10.1093/jxb/erp152Freeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology®, 91(10), 986-992. doi:10.1094/phyto.2001.91.10.986Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum Species Responsible for Anthracnose Diseases of Various Fruits. Plant Disease, 82(6), 596-605. doi:10.1094/pdis.1998.82.6.596Gfeller, A., Dubugnon, L., Liechti, R., & Farmer, E. E. (2010). Jasmonate Biochemical Pathway. Science Signaling, 3(109), cm3-cm3. doi:10.1126/scisignal.3109cm3Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., & Díaz-Ricci, J. C. (2012). Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiology and Biochemistry, 54, 10-16. doi:10.1016/j.plaphy.2012.01.019Guidarelli, M., Carbone, F., Mourgues, F., Perrotta, G., Rosati, C., Bertolini, P., & Baraldi, E. (2011). Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathology, 60(4), 685-697. doi:10.1111/j.1365-3059.2010.02423.xHeidrich, K., Wirthmueller, L., Tasset, C., Pouzet, C., Deslandes, L., & Parker, J. E. (2011). Arabidopsis EDS1 Connects Pathogen Effector Recognition to Cell Compartment-Specific Immune Responses. Science, 334(6061), 1401-1404. doi:10.1126/science.1211641Horowitz, S., Freeman, S., & Sharon, A. (2002). Use of Green Fluorescent Protein-Transgenic Strains to Study Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum. Phytopathology®, 92(7), 743-749. doi:10.1094/phyto.2002.92.7.743Ikeda, M., Mitsuda, N., & Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs But Positively Regulate the Acquired Thermotolerance. Plant Physiology, 157(3), 1243-1254. doi:10.1104/pp.111.179036Ikeda, M., & Ohme-Takagi, M. (2009). A Novel Group of Transcriptional Repressors in Arabidopsis. Plant and Cell Physiology, 50(5), 970-975. doi:10.1093/pcp/pcp048Khan, A. A., & Shih, D. S. (2004). Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Science, 166(3), 753-762. doi:10.1016/j.plantsci.2003.11.015Krinke, O., Ruelland, E., Valentová, O., Vergnolle, C., Renou, J.-P., Taconnat, L., … Zachowski, A. (2007). Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology, 144(3), 1347-1359. doi:10.1104/pp.107.100842Kubigsteltig, I., Laudert, D., & Weiler, E. W. (1999). Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta, 208(4), 463-471. doi:10.1007/s004250050583Leandro, L. F. S., Gleason, M. L., Nutter, F. W., Wegulo, S. N., & Dixon, P. M. (2001). Germination and Sporulation of Colletotrichum acutatum on Symptomless Strawberry Leaves. Phytopathology®, 91(7), 659-664. doi:10.1094/phyto.2001.91.7.659Leon-Reyes, A., Van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C. M., … Pieterse, C. M. J. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 232(6), 1423-1432. doi:10.1007/s00425-010-1265-zLi, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.xLi, J., Brader, G., & Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. doi:10.1105/tpc.016980Liu, P.-P., von Dahl, C. C., Park, S.-W., & Klessig, D. F. (2011). Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco. Plant Physiology, 155(4), 1762-1768. doi:10.1104/pp.110.171694Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2López-Ráez, J. A., Verhage, A., Fernández, I., García, J. M., Azcón-Aguilar, C., Flors, V., & Pozo, M. J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 61(10), 2589-2601. doi:10.1093/jxb/erq089Maas, J. L. (Ed.). (1998). Compendium of Strawberry Diseases, Second Edition. doi:10.1094/9780890546178Makowski, R. M. D., & Mortensen, K. (1998). Latent infections and penetration of the bioherbicide agent Colletotrichum gloeosporioides f. sp. malvae in non-target field crops under controlled environmental conditions. Mycological Research, 102(12), 1545-1552. doi:10.1017/s0953756298006960Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521Marcel, S., Sawers, R., Oakeley, E., Angliker, H., & Paszkowski, U. (2010). Tissue-Adapted Invasion Strategies of the Rice Blast Fungus Magnaporthe oryzae. The Plant Cell, 22(9), 3177-3187. doi:10.1105/tpc.110.078048Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal, 50(1), 128-139. doi:10.1111/j.1365-313x.2007.03039.xPajerowska-Mukhtar, K. M., Wang, W., Tada, Y., Oka, N., Tucker, C. L., Fonseca, J. P., & Dong, X. (2012). The HSF-like Transcription Factor TBF1 Is a Major Molecular Switch for Plant Growth-to-Defense Transition. Current Biology, 22(2), 103-112. doi:10.1016/j.cub.2011.12.015Pe�a-Cort�s, H., Barrios, P., Dorta, F., Polanco, V., S�nchez, C., S�nchez, E., & Ram�rez, I. (2004). Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 23(3), 246-260. doi:10.1007/s00344-004-0035-1Pernas, M., Ryan, E., & Dolan, L. (2010). SCHIZORIZA Controls Tissue System Complexity in Plants. Current Biology, 20(9), 818-823. doi:10.1016/j.cub.2010.02.062Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308-316. doi:10.1038/nchembio.164Rahman, T. A. E., Oirdi, M. E., Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions®, 25(12), 1584-1593. doi:10.1094/mpmi-07-12-0187-rRen, C.-M., Zhu, Q., Gao, B.-D., Ke, S.-Y., Yu, W.-C., Xie, D.-X., & Peng, W. (2008). Transcription Factor WRKY70 Displays Important but No Indispensable Roles in Jasmonate and Salicylic Acid Signaling. Journal of Integrative Plant Biology, 50(5), 630-637. doi:10.1111/j.1744-7909.2008.00653.xRietz, S., Stamm, A., Malonek, S., Wagner, S., Becker, D., Medina-Escobar, N., … Parker, J. E. (2011). Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist, 191(1), 107-119. doi:10.1111/j.1469-8137.2011.03675.xRobert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447Cristina, M., Petersen, M., & Mundy, J. (2010). Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 61(1), 621-649. doi:10.1146/annurev-arplant-042809-112252Rouhier, N. (2006). Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany, 57(8), 1685-1696. doi:10.1093/jxb/erl001Ruepp, A. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32(18), 5539-5545. doi:10.1093/nar/gkh894Rusterucci, C. (2001). The Disease Resistance Signaling Components EDS1 and PAD4 Are Essential Regulators of the Cell Death Pathway Controlled by LSD1 in Arabidopsis. THE PLANT CELL ONLINE, 13(10), 2211-2224. doi:10.1105/tpc.13.10.2211Sarowar, S., Zhao, Y., Soria-Guerra, R. E., Ali, S., Zheng, D., Wang, D., & Korban, S. S. (2011). Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 62(14), 4851-4861. doi:10.1093/jxb/err147Sasaki, Y. (2001). Monitoring of Methyl Jasmonate-responsive Genes in Arabidopsis by cDNA Macroarray: Self-activation of Jasmonic Acid Biosynthesis and Crosstalk with Other Phytohormone Signaling Pathways. DNA Research, 8(4), 153-161. doi:10.1093/dnares/8.4.153Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., … Maclean, D. J. (2003). Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola. Plant Physiology, 132(2), 999-1010. doi:10.1104/pp.103.021683Simpson, D. W. (1991). Resistance toBotrytis cinereain pistillate genotypes of the cultivated strawberryFragaria ananassa. Journal of Horticultural Science, 66(6), 719-723. doi:10.1080/00221589.1991.11516203Shulaev, V., Sargent, D. J., Crowhurst, R. N., Mockler, T. C., Folkerts, O., Delcher, A. L., … Mane, S. P. (2010). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43(2), 109-116. doi:10.1038/ng.740Song, W. C., Funk, C. D., & Brash, A. R. (1993). Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences, 90(18), 8519-8523. doi:10.1073/pnas.90.18.8519Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89-100. doi:10.1038/nri3141Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, 104(47), 18842-18847. doi:10.1073/pnas.0708139104Staswick, P. E., & Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis. The Plant Cell, 16(8), 2117-2127. doi:10.1105/tpc.104.023549Ten Hove, C. A., Willemsen, V., de Vries, W. J., van Dijken, A., Scheres, B., & Heidstra, R. (2010). SCHIZORIZA Encodes a Nuclear Factor Regulating Asymmetry of Stem Cell Divisions in the Arabidopsis Root. Current Biology, 20(5), 452-457. doi:10.1016/j.cub.2010.01.018Turner, J. G., Ellis, C., & Devoto, A. (2002). The Jasmonate Signal Pathway. The Plant Cell, 14(suppl 1), S153-S164. doi:10.1105/tpc.000679Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., … Ryals, J. (1992). Acquired resistance in Arabidopsis. The Plant Cell, 4(6), 645-656. doi:10.1105/tpc.4.6.645Vargas, W. A., Martín, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., Díaz-Mínguez, J. M., … Sukno, S. A. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize. Plant Physiology, 158(3), 1342-1358. doi:10.1104/pp.111.190397Venugopal, S. C., Jeong, R.-D., Mandal, M. K., Zhu, S., Chandra-Shekara, A. C., Xia, Y., … Kachroo, P. (2009). Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling. PLoS Genetics, 5(7), e1000545. doi:10.1371/journal.pgen.1000545Vlot, A. C., Liu, P.-P., Cameron, R. K., Park, S.-W., Yang, Y., Kumar, D., … Klessig, D. F. (2008). Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance inArabidopsis thaliana. The Plant Journal, 56(3), 445-456. doi:10.1111/j.1365-313x.2008.03618.xWang, D., Amornsiripanitch, N., & Dong, X. (2006). A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathogens, 2(11), e123. doi:10.1371/journal.ppat.0020123Wang, D. (2005). Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308(5724), 1036-1040. doi:10.1126/science.1108791Wang, G.-F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., & Lu, H. (2011). Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis. Plant Physiology, 156(3), 1508-1519. doi:10.1104/pp.111.176776Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology, 8(4), 383-389. doi:10.1016/j.pbi.2005.05.010Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., … Denby, K. J. (2012). Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis. Th

    Educational and labor wastage of doctors in Mexico: towards the construction of a common methodology

    Get PDF
    BACKGROUND: This paper addresses the problem of wastage of the qualified labor force, which takes place both during the education process and when trained personnel try to find jobs in the local market. METHODS: Secondary sources were used, mainly the Statistical yearbooks of the National Association of Universities and Higher Education Institutions (ANUIES in Spanish). Also, the 2000 Population Census was used to estimate the different sources of labor market wastage. The formulas were modified to estimate educational and labor wastage rates. RESULTS: Out of every 1000 students who started a medical training in 1996, over 20% were not able to finish the training by 2000. Furthermore, out of every 1000 graduates, 31% were not able to find a remunerated position in the labor market that would enable them to put into practice the abilities and capacities obtained at school. Important differences can be observed between generalists and specialists, as well as between men and women. In the case of specialists and men, lower wastage rates can be observed as compared to the wastage rates of generalists and women. A large percentage of women dedicate themselves exclusively to household duties, which in labor terms represents a wastage of their capacity to participate in the production of formal health services. CONCLUSION: Women are becoming a majority in most medical schools, yet their participation in the labor market does not reflect the same trend. Among men, policies should be formulated to incorporate doctors in the specific health field for which they were trained. Regarding women, specific policies should target those who are dedicated full-time to household activities in order to create the possibility of having them occupy a remunerated job if they are willing to do so. Reducing wastage at both the educational and labor levels should improve the capacity of social investment, thereby increasing the capacity of the health system as a whole to provide services, particularly to those populations who are most in need

    The effect of an online exercise programme on bone health in paediatric cancer survivors (iBoneFIT): study protocol of a multi-centre randomized controlled trial

    Get PDF
    Background: New approaches on paediatric cancer treatment aim to maintain long-term health. As a result of radiotherapy, chemotherapy or surgery, paediatric cancer survivors tend to suffer from any chronic health condition. Endocrine dysfunction represents one of the most common issues and affects bone health. Exercise is key for bone mass accrual during growth, specifically plyometric jump training. The iBoneFIT study will investigate the effect of a 9-month online exercise programme on bone health in paediatric cancer survivors. This study will also examine the effect of the intervention on body composition, physical fitness, physical activity, calcium intake, vitamin D, blood samples quality of life and mental health. Methods: A minimum of 116 participants aged 6 to 18 years will be randomized into an intervention (n = 58) or control group (n = 58). The intervention group will receive an online exercise programme and diet counselling on calcium and vitamin D. In addition, five behaviour change techniques and a gamification design will be implemented in order to increase the interest of this non-game programme. The control group will only receive diet counselling. Participants will be assessed on 3 occasions: 1) at baseline; 2) after the 9 months of the intervention; 3) 4 months following the intervention. The primary outcome will be determined by dual energy X-ray absorptiometry (DXA) and the hip structural analysis, trabecular bone score and 3D-DXA softwares. Secondary outcomes will include anthropometry, body composition, physical fitness, physical activity, calcium and vitamin D intake, blood samples, quality of life and mental health. Discussion: Whether a simple, feasible and short in duration exercise programme can improve bone health has not been examined in paediatric cancer survivors. This article describes the design, rationale and methods of a study intended to test the effect of a rigorous online exercise programme on bone health in paediatric cancer survivors. If successful, the iBoneFIT study will contribute to decrease chronic health conditions in this population and will have a positive impact in the society.The iBoneFIT project is funded by a fellowship from 'la Caixa' Foundation (ID 100010434). The fellowship code is LCF/BQ/PR19/11700007. This study has been partially supported by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES), and by the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades and European Regional Development Fund (ERDF), ref. SOMM17/6107/UGR

    A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and its Regulation in Saccharomyces Cerevisiae

    Get PDF
    Using a hierarchical approach, 620 non-essential single-gene yeast deletants generated by EUROFAN I were systematically screened for cell-wall-related phenotypes. By analyzing for altered sensitivity to the presence of Calcofluor white or SDS in the growth medium, altered sensitivity to sonication, or abnormal morphology, 145 (23%) mutants showing at least one cell wall-related phenotype were selected. These were screened further to identify genes potentially involved in either the biosynthesis, remodeling or coupling of cell wall macromolecules or genes involved in the overall regulation of cell wall construction and to eliminate those genes with a more general, pleiotropic effect. Ninety percent of the mutants selected from the primary tests showed additional cell wall-related phenotypes. When extrapolated to the entire yeast genome, these data indicate that over 1200 genes may directly or indirectly affect cell wall formation and its regulation. Twenty-one mutants with altered levels of β1,3-glucan synthase activity and five Calcofluor white-resistant mutants with altered levels of chitin synthase activities were found, indicating that the corresponding genes affect β1,3-glucan or chitin synthesis. By selecting for increased levels of specific cell wall components in the growth medium, we identified 13 genes that are possibly implicated in different steps of cell wall assembly. Furthermore, 14 mutants showed a constitutive activation of the cell wall integrity pathway, suggesting that they participate in the modulation of the pathway either directly acting as signaling components or by triggering the Slt2-dependent compensatory mechanism. In conclusion, our screening approach represents a comprehensive functional analysis on a genomic scale of gene products involved in various aspects of fungal cell wall formation

    Participación social y calidad en los servicios de salud: la experiencia del aval ciudadano en México

    Get PDF
    OBJETIVO: Analizar la experiencia del aval ciudadano en el sistema de salud mexicano en la mejora de los servicios de salud. METODOS: Estudio de corte cualitativo en ocho estados de México en 2008. Se evaluaron diferentes aspectos del programa nacional para mejorar la calidad de los servicios de salud. Se compara la estrategia de México con otras experiencias en América Latina. RESULTADOS: Se exponen los avances y problemas del funcionamiento del aval ciudadano, figura que promueve la participación social en salud de la población. CONCLUSIONES: El aval ciudadano es una figura con gran potencial para representar a los usuarios en los servicios de salud y transmitir sus demandas de mejora de la calidad de la atención médica

    Database of spatial distribution of non indigenous species in Spanish marine waters

    Get PDF
    Research in marine Spanish waters are focused on several actions to achieve an effectively management on protected areas, with the active participation of the stakeholders and research as basic tools for decision-making. Among these actions, there is one about the knowledge and control on NIS. One of its objectives is the creation of NIS factsheets, which are going to be added to the National Marine Biodiversity Geographical System (GIS) providing complementary information about taxonomic classification, common names, taxonomic synonyms, species illustrations, identification morphological characters, habitat in the native and introduced regions, biological and ecological traits, GenBank DNA sequences, world distribution, first record and evolution in the introduced areas, likely pathways of introduction, effects in the habitats and interaction with native species, and potential management measures to apply. The database will also provide data for (1) the European online platforms, (2) the environmental assessment for the Descriptor 2 (D2-NIS) of the EU Marine Strategy Framework Directive (MSFD), as well as (3) supporting decisions made by stakeholders. It is the result of extensive collaboration among scientist, manager’s and citizen science in the Spanish North-Atlantic, South-Atlantic, Gibraltar Strait-Alboran, Levantine-Balearic and Canary Islands marine divisions, providing an updated overview of the spatial distribution of relevant extended and invasive NIS of recent and established NIS introduced by maritime transport and aquaculture pathways, as well as on cryptogenic or native species in expansion due to the climatic water warming trend

    Universidad, género, docencia e igualdad

    Get PDF
    La Red de investigación en docencia universitaria “Universidad, docencia, genero e igualdad” persigue avanzar en la calidad e innovación de las enseñanzas universitarias a partir de la inclusión de la perspectiva de género. Se busca dar cumplimiento a las directrices generales de los nuevos planes de estudio respecto del principio de igualdad de oportunidades entre hombres y mujeres en la formación universitaria (Real Decreto 1393/2007. BOE nº 260, 30 de octubre de 2007). En la cuarta edición de la Red, y dada su composición multidisciplinar, se desarrollaron tres líneas de investigación: 1) mantenimiento del “Portal web con recursos docentes con perspectiva de género”, proyecto financiado por el Instituto de la Mujer (PACUI, 2012) e iniciado en el curso 2012-2013; 2) desarrollo (primera versión) de “iLengUA”, una herramienta informática para un discurso inclusivo e igualitario; y 3) diseño de la Guía para una orientación universitaria inclusiva

    Atlas de las praderas marinas de España

    Get PDF
    Knowledge of the distribution and extent of seagrass habitats is currently the basis of management and conservation policies of the coastal zones in most European countries. This basic information is being requested through European directives for the establishment of monitoring programmes and the implementation of specific actions to preserve the marine environment. In addition, this information is crucial for the quantification of the ecological importance usually attributed to seagrass habitats due to, for instance, their involvement in biogeochemical cycles, marine biodiversity and quality of coastal waters or global carbon budgets. The seagrass atlas of Spain represents a huge collective effort performed by 84 authors across 30 Spanish institutions largely involved in the scientific research, management and conservation of seagrass habitats during the last three decades. They have contributed to the availability of the most precise and realistic seagrass maps for each region of the Spanish coast which have been integrated in a GIS to obtain the distribution and area of each seagrass species. Most of this information has independently originated at a regional level by regional governments, universities and public research organisations, which explain the elevated heterogeneity in criteria, scales, methods and objectives of the available information. On this basis, seagrass habitats in Spain occupy a total surface of 1,541,63 km2, 89% of which is concentrated in the Mediterranean regions; the rest is present in sheltered estuarine areas of the Atlantic peninsular regions and in the open coastal waters of the Canary Islands, which represents 50% of the Atlantic meadows. Of this surface, 71.5% corresponds to Posidonia oceanica, 19.5% to Cymodocea nodosa, 3.1% to Zostera noltii (=Nanozostera noltii), 0.3% to Zostera marina and 1.2% to Halophila decipiens. Species distribution maps are presented (including Ruppia spp.), together with maps of the main impacts and pressures that has affected or threatened their conservation status, as well as the management tools established for their protection and conservation. Despite this considerable effort, and the fact that Spain has mapped wide shelf areas, the information available is still incomplete and with weak precision in many regions, which will require an investment of major effort in the near future to complete the whole picture and respond to demands of EU directives
    corecore