10 research outputs found

    Spread of a highly mucoid Streptococcus pyogenes emm3/ST15 clone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronic acid capsule plays a key role in <it>Streptococcus pyogenes </it>virulence. Circulation of mucoid or highly encapsulated strains has been related to rheumatic fever epidemics and invasive disease in several countries. In 2009, an outbreak of mucoid <it>S. pyogenes </it>isolates was detected in northern Spain. The aim of the study was to describe clinical and molecular characteristics of mucoid strains causing this outbreak and to compare them with a sample of non-mucoid <it>S. pyogenes </it>isolates obtained during the same period of time.</p> <p>Methods</p> <p>All <it>S. pyogenes </it>isolates with a mucoid colony morphology (n = 132), 10% of non-mucoid (n = 144) and all invasive <it>S. pyogenes </it>isolates (n = 7) obtained in 2009 were included. Characterization was performed by T-agglutination, <it>emm </it>typing, pulsed field gel electrophoresis and multilocus sequence typing.</p> <p>Results</p> <p>One clone characterized as <it>emm</it>3.1/ST15 comprised 98.5% (n = 130) of all mucoid isolates. Subjects of all ages were affected. Main clinical manifestations were pharyngitis and scarlet fever, but this clone also caused invasive disease: two cases of streptococcal toxic shock syndrome, one arthritis, and one celullitis with a fatal outcome. Mucoid isolates were more prone to cause invasive disease than non-mucoid isolates (p = 0.001).</p> <p>Conclusions</p> <p>Although no acute rheumatic fever cases were detected, the most worrisome characteristics of this clone were the success for causing invasive disease and the merge of two virulent features: the serotype, <it>emm</it>3, and capsule hyper-production, expressed as a mucoid morphology.</p

    Phenotypic and Genotypic Characterization of Streptococcus pyogenes Isolates Displaying the MLS(B) Phenotype of Macrolide Resistance in Spain, 1999 to 2005

    No full text
    The aim of this study was to describe the genetic characteristics of Streptococcus pyogenes showing the MLS(B) phenotype of macrolide resistance from 1999 to 2005 in Spain and to highlight the substantial increase in these isolates in the last few years. The antimicrobial susceptibilities of 17,232 group A streptococci isolated from Madrid and Gipuzkoa from 1999 to 2005 were studied. The presence of the resistance genes ermA, ermB, mef, tetM, and tetO and the presence of the intTn and xis genes of the Tn916-Tn1545 transposon family were studied in a sample of 739 MLS(B)-resistant isolates. The epidemiological relationships among these isolates were analyzed by emm typing, T typing, and multilocus sequence typing. Erythromycin resistance was found in 21.3% of the isolates analyzed (annual variation of 14.3% to 28.9%). Until 2003, most erythromycin-resistant isolates showed the M phenotype, but in 2004 and 2005, about 50% of isolates showed the MLS(B) phenotype. Among the MLS(B)-resistant isolates studied, 16 clones were identified. The most prevalent clone was a strange emm11/T11/ST403 clone with a null yqiL allele. All but one of the 463 emm11/T11/ST403 isolates carried the ermB, tetM, intTn, and xis genes. The second most prevalent MLS(B)-resistant clone was emm28/T28/ST52, which comprised two subclones: one bacitracin-resistant, tetracycline-susceptible subclone carrying the ermB gene (n = 115) and another bacitracin-susceptible, tetracycline-resistant subclone carrying the ermB and tetM genes (n = 33). The rapid diffusion of these two clones, and especially of emm11/T11/ST403, caused the large increase in MLS(B)-resistant S. pyogenes isolates in Spain, suggesting a potential ability for international dissemination

    In Vitro Activities of Retapamulin and 16 Other Antimicrobial Agents against Recently Obtained Streptococcus pyogenes Isolates▿

    No full text
    Retapamulin in vitro activity against 400 Streptococcus pyogenes clinical isolates obtained from skin, pharynx, ear fluid, and blood samples recovered from 2007 to 2009 was studied. The isolates belonged to 26 different emm types, including isolates nonsusceptible to erythromycin (n = 187), tetracycline (n = 99), ciprofloxacin (n = 59), and bacitracin (n = 43). Results were compared to the activities of 16 other antibiotics for topical and systemic use. Retapamulin MICs ranged from ≤0.015 to 0.12 μg/ml, showing the highest intrinsic activity among the topical antimicrobial drugs studied

    Quorum sensing network in clinical strains of A. baumannii : AidA is a new quorum quenching enzyme

    Get PDF
    Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2-clon-2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/β hydrolase gene, AidA). This QQ enzyme was present in all nonmotile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421-GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of HO (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/β hydrolase gene, AidA protein) was detected in these strains

    Rhodomyrtone decreases Staphylococcus aureus SigB activity during exponentially growing phase and inhibits haemolytic activity within membrane vesicles

    No full text
    REIPI/GEIH Study Group.Sigma factor B (SigB) controls the expression of Staphylococcus aureus genes including virulence factors and plays a role in the bacterial secretion system through membrane vesicle production. Inhibition of SigB could attenuate SigB dependent virulence and secretion system. The objective of this study was to determine the effects of rhodomyrtone on SigB and virulence factors related to SigB. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of rhodomyrtone against 67 clinical methicillin-resistant S. aureus isolates were 0.25–8 μg/ml, which were similar to those of vancomycin. Using luciferase gene fused to SigB dependent promoters of asp23, five time reduction in SigB activity was observed when the bacteria were treated with rhodomyrtone for 3 h. Rhodomyrtone significantly reduced SigB activity in a concentration dependent manner in exponentially growing cells (P < 0.05). In addition, sigB mutant was more sensitive towards increasing concentrations of rhodomyrtone than the wild type and yabJ-spoVG mutant. Rhodomyrtone at 0.625 μg/ml reduced the growth of sigB mutant by approximately 99%, compared with the yabJ-spoVG mutant and the wild type. Membrane vesicles were significantly reduced in the bacterial cells when treated with 0.5 × MIC rhodomyrtone (P < 0.05). Decreased haemolytic activity was detected within rhodomyrtone-treated membrane vesicles. The results indicated that rhodomyrtone inhibited S. aureus SigB activity during exponentially growing phase and inhibited haemolytic activity within membrane vesicles.This work was financially supported by The Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0033/2553) and TRF Senior Research Scholar (Grant No. RTA 6180006), the Thailand Research Fund. M.J.R.O. was funded by the 'XXII Programa Propio de Fomento de la Investigación', University of Córdoba

    A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe

    No full text
    BACKGROUND: Since the confirmation of the first patient infected with SARS-CoV-2 in Spain in January 2020, the epidemic has grown rapidly, with the greatest impact on the region of Madrid. This article describes the first 2226 adult patients with COVID-19, consecutively admitted to La Paz University Hospital in Madrid. METHODS: Our cohort included all patients consecutively hospitalized who had a final outcome (death or discharge) in a 1286-bed hospital of Madrid (Spain) from 25 February (first case admitted) to 19 April 2020. The data were manually entered into an electronic case report form, which was monitored prior to the analysis. RESULTS: We consecutively included 2226 adult patients admitted to the hospital who either died (460) or were discharged (1766). The patients’ median age was 61 years, and 51.8% were women. The most common comorbidity was arterial hypertension (41.3%), and the most common symptom on admission was fever (71.2%). The median time from disease onset to hospital admission was 6 days. The overall mortality was 20.7% and was higher in men (26.6% vs. 15.1%). Seventy-five patients with a final outcome were transferred to the intensive care unit (ICU) (3.4%). Most patients admitted to the ICU were men, and the median age was 64 years. Baseline laboratory values on admission were consistent with an impaired immune-inflammatory profile. CONCLUSIONS: We provide a description of the first large cohort of hospitalized patients with COVID-19 in Europe. Advanced age, male sex, the presence of comorbidities and abnormal laboratory values were more common among the patients with fatal outcomes

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text

    Management of urinary tract infection in solid organ transplant recipients: Consensus statement of the Group for the Study of Infection in Transplant Recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Network for Research in Infectious Diseases (REIPI)

    No full text
    corecore