31 research outputs found

    Deforestation alters species interactions

    Get PDF
    Interspecific interactions are a major determinant of stability in ecological communities and are known to vary with biotic and abiotic conditions. Deforestation is the primary driver of the ongoing sixth mass extinction, yet its effect on species interactions remains largely unexplored. We investigate how deforestation affects species interactions using a complex systems model and a co-occurrence dataset of 363 bird species, observed across 134 sites, from 5 regions across the Brazilian Atlantic Forest totalling 27,226 interactions. Both theoretical and empirical results show that interspecific interactions vary non-monotonically with forest cover and are more positive than average in areas with higher forest cover, and to a lesser extent in highly deforested areas. Observed differences in interactions reflect both species turnover and changes in pairwise interactions. Our results point to changes in stability across the gradient of deforestation that may lead to varying community resilience to environmental perturbations

    Intraspecific variation in sensitivity to habitat fragmentation is influenced by forest cover and distance to the range edge

    Get PDF
    The relative effects of habitat loss and fragmentation on biodiversity have been a topic of discussion for decades. While it is acknowledged that habitat amount can mediate the effects of habitat fragmentation, it is unclear what other factors may drive inter- and intraspecific variation in fragmentation effects and their implications for conservation. We tested whether the effects of forest fragmentation on 362 bird species' occurrence in the Atlantic Forest of Brazil are mediated by distance to geographic range edge and habitat amount, and whether these effects explain intraspecific variation across populations. Using a single binomial linear mixed effects model, we found that fragmentation had mostly negative effects on occurrence probability up to 1080 km from the species' range edge, independent of habitat amount. We also show that above this distance, fragmentation has predominantly positive effects, more accentuated in deforested landscapes. We demonstrate that fragmentation effects can be both positive and negative, indicating that different populations of the same species can respond differently depending on distance to range edge and local forest cover. Our results help clarify one of the drivers of contradictory results found in the fragmentation literature and highlight the importance of preventing habitat fragmentation for the conservation of endangered populations. Conservation initiatives should focus on minimising fragmentation closer to range edges of target species and in regions where species range edges overlap

    Aves da Serra de Maracaju, Mato Grosso do Sul, Brasil

    Get PDF
    The Serra de Maracaju stands out in the orography of Mato Grosso do Sul as a watershed between the Upper Paraguay and Upper Parana river basins. In this study, we report on the occurrence of 413 species of birds based on historical records and field data collected by us. The records of species such as Aburria nattereri, Ictinia mississippiensis, Spizaetus tyrannus, Micrococcyx cinereus, Berlepschia rikeri, Oxyruncus cristatus, Knipolegus lophotes, Myiarchus tuberculifer, Tyrannopsis sulphurea, Tityra semifasciata, Cyanerpes cyaneus, and Poospiza cinerea are the first for the state of Mato Grosso do Sul. The Serra de Maracaju act as an important dispersal corridor for elements of the Amazon and Atlantic Forest in the eastern border of the Pantanal. Fifteen species reported for the area are regarded as globally or nationally endangered, such Harpia harpyja, Alectrurus tricolor, and Sporophila maximiliani. Human impacting activities such as agriculture, monoculture of exotic trees, and conversion of wood into charcoal, seriously threaten the survival of these and other bird species occurring in the region. The creation of a large conservation unit and the proper management of the landscape, so as to maintain the local diversity and habitat structure, are crucial to ensure the conservation these species and, therefore, the biodiversity of the surrounding plateaus and plains of Pantanal

    Checklist of the birds of Mato Grosso do Sul state, Brazil: diversity and conservation

    Get PDF
    Several phytogeographic regions (Cerrado, Pantanal, Atlantic Forest, Gran Chaco, and Chiquitano Dry Forests) converge in the state of Mato Grosso do Sul, Brazil, and influence regional biodiversity. Despite a list of birds in the state of Mato Grosso do Sul being published by Nunes et al. (2017), it is necessary to update and critically review avifauna records. In this study, we gathered the results of several records obtained from species lists and online data platforms of the 336 sites in this state over the last decades and grouped them into Main (Primary and Secondary) and Tertiary Lists. The avifauna of Mato Grosso do Sul is composed of 678 species, of which 643 (95%) have records proving their occurrence (Primary List), whereas 34 still lack documentation (Secondary List). The number of related species for Mato Grosso do Sul represents 34% of the Brazilian avifauna. Some species stand out for their unique occurrence in Mato Grosso do Sul, such as Melanerpes cactorum, Celeus lugubris, Phaethornis subochraceus, and Cantorchilus guarayanus, reflecting the influence of different phytogeographic regions of the Chaco and Chiquitano Dry Forests. Migrants represent 20% of the bird community occurring in the state, of which 93 species correspond to migrants from various regions of South America (south and west) and 40 to boreal migrants. Thirty-three species perform nomadic movements across the Pantanal Plain and other regions of the state. Thirty-one species are included in some conservation-threatened categories of global and/or national endangered species lists. Other 30 species are included in the near-threatened category at the global level and 23 at the national level. In addition, species typical of dry forests (in Serra da Bodoquena and Maciço do Urucum) and those from the Atlantic Forest in the south of the state deserve attention due to their restricted distribution and the high anthropogenic pressure on their habitat

    Checklist of the birds of Mato Grosso do Sul state, Brazil: diversity and conservation

    Get PDF
    Several phytogeographic regions (Cerrado, Pantanal, Atlantic Forest, Gran Chaco, and Chiquitano Dry Forests) converge in the state of Mato Grosso do Sul, Brazil, and influence regional biodiversity. Despite a list of birds in the state of Mato Grosso do Sul being published by Nunes et al. (2017), it is necessary to update and critically review avifauna records. In this study, we gathered the results of several records obtained from species lists and online data platforms of the 336 sites in this state over the last decades and grouped them into Main (Primary and Secondary) and Tertiary Lists. The avifauna of Mato Grosso do Sul is composed of 678 species, of which 643 (95%) have records proving their occurrence (Primary List), whereas 34 still lack documentation (Secondary List). The number of related species for Mato Grosso do Sul represents 34% of the Brazilian avifauna. Some species stand out for their unique occurrence in Mato Grosso do Sul, such as Melanerpes cactorum, Celeus lugubris, Phaethornis subochraceus, and Cantorchilus guarayanus, reflecting the influence of different phytogeographic regions of the Chaco and Chiquitano Dry Forests. Migrants represent 20% of the bird community occurring in the state, of which 93 species correspond to migrants from various regions of South America (south and west) and 40 to boreal migrants. Thirty-three species perform nomadic movements across the Pantanal Plain and other regions of the state. Thirty-one species are included in some conservation-threatened categories of global and/or national endangered species lists. Other 30 species are included in the near-threatened category at the global level and 23 at the national level. In addition, species typical of dry forests (in Serra da Bodoquena and Maciço do Urucum) and those from the Atlantic Forest in the south of the state deserve attention due to their restricted distribution and the high anthropogenic pressure on their habitat

    Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    Get PDF
    Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world’s biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.The authors acknowledge the following funding: University of Canterbury Doctoral Scholarship (L.P.M.); The Marsden Fund grant UOC1705 (J.M.T., L.P.M.); The São Paulo Research Foundation - FAPESP 2014/01986-0 (M.G., C.E.), 2015/15172-7 and 2016/18355-8 (C.E.), 2004/00810-3 and 2008/10154-7 (C.I.D., M.G., M.A.P.); Earthwatch Institute and Conservation International for financial support (C.I.D., M.G., M.A.P.); Carlos Chagas Filho Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ grant E-26/200.610/2022 (C.E.); Brazilian Research Council grants 540481/01-7 and 304742/2019-8 (M.A.P.) and 300970/2015-3 (M.G.); Rufford Small Grants for Nature Conservation No. 22426–1 (J.C.M., I.M.), No. 9163-1 (G.B.J.) and No. 11042-1 (MCM); Universidade Estadual de Santa Cruz (Propp-UESC; No. 00220.1100.1644/10-2018) (J.C.M., I.M.); Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB (No. 0525/2016) (J.C.M., I.M.); European Research Council under the European Union’s Horizon 2020 research and innovation program (grant 787638) and The Swiss National Science Foundation (grant 173342), both awarded to C. Graham (D.M.D.); ARC SRIEAS grant SR200100005 Securing Antarctica’s Environmental Future (D.M.D.); German Science Foundation—Deutsche Forschungsgemeinschaft PAK 825/1 and FOR 2730 (K.B.G., E.L.N., M.Q., V.S., M.S.), FOR 1246 (K.B.G., M.S., M.G.R.V.) and HE2041/20-1 (F.S., M.S.); Portuguese Foundation for Science and Technology - FCT/MCTES contract CEECIND/00135/2017 and grant UID/BIA/04004/2020 (S.T.) and contract CEECIND/02064/2017 (L.P.S.); National Scientific and Technical Research Council, PIP 592 (P.G.B.); Instituto Venezolano de Investigaciones Científicas - Project 898 (V.S.D.)

    Extinction filters mediate the global effects of habitat fragmentation on animals

    Get PDF
    Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests

    Data from: Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds

    No full text
    1. Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases, and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. 2. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. 3. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites, and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and if β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. percent forest and pasture cover surrounding each site). 4. β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenisation within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. 5. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot
    corecore