234 research outputs found

    Phenotypic evolution studied by layered stochastic differential equations

    Full text link
    Time series of cell size evolution in unicellular marine algae (division Haptophyta; Coccolithus lineage), covering 57 million years, are studied by a system of linear stochastic differential equations of hierarchical structure. The data consists of size measurements of fossilized calcite platelets (coccoliths) that cover the living cell, found in deep-sea sediment cores from six sites in the world oceans and dated to irregular points in time. To accommodate biological theory of populations tracking their fitness optima, and to allow potentially interpretable correlations in time and space, the model framework allows for an upper layer of partially observed site-specific population means, a layer of site-specific theoretical fitness optima and a bottom layer representing environmental and ecological processes. While the modeled process has many components, it is Gaussian and analytically tractable. A total of 710 model specifications within this framework are compared and inference is drawn with respect to model structure, evolutionary speed and the effect of global temperature.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS559 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Alkenone producers during late Oligocene-early Miocene revisited

    Get PDF
    This study investigates ancient alkenone producers among the late Oligocene–early Miocene coccolithophores recorded at Deep Sea Drilling Project (DSDP) Site 516. Contrary to common assumptions, Reticulofenestra was not the most important alkenone producer throughout the studied time interval. The comparison between coccolith species-specific absolute abundances and alkenone contents in the same sedimentary samples shows that Cyclicargolithus abundances explain 40% of the total variance of alkenone concentration and that the species Cyclicargolithus floridanus was a major alkenone producer, although other related taxa may have also contributed to the alkenone production at DSDP Site 516. The distribution of the different alkenone isomers (MeC37:2, EtC38:2, and MeC38:2) remained unchanged across distinct changes in species composition, suggesting similar diunsaturated alkenone compositions within the Noelaerhabdaceae family during the late Oligocene–early Miocene. However, the overall larger cell size of Cyclicargolithus may have implications for the alkenone-based reconstruction of past partial pressure of CO2. Our results underscore the importance of a careful evaluation of the most likely alkenone producers for periods (>1.85 Ma) predating the first occurrence of contemporary alkenone producers (i.e., Emiliania huxleyi and Gephyrocapsa oceanica)

    Timing and Pacing of Indonesian Throughflow Restriction and Its Connection to Late Pliocene Climate Shifts

    Get PDF
    drier conditions. This shift fundamentally reorganized Earth\u27s climate from the Miocene state toward conditions similar to the present. During the Pliocene, the progressive restriction of the Indonesian Throughflow (ITF) is suggested to have enhanced this shift toward stronger meridional thermal gradients. Reduced ITF, caused by the northward movement of Australia and uplift of Indonesia, impeded global thermohaline circulation, also contributing to late Pliocene Northern Hemisphere cooling via atmospheric and oceanographic teleconnections. Here we present an orbitally tuned high‐resolution sediment geochemistry, calcareous nannofossil, and X‐ray fluorescence record between 3.65 and 2.97 Ma from the northwest shelf of Australia within the Leeuwin Current. International Ocean Discovery Program Site U1463 provides a record of local surface water conditions and Australian climate in relation to changing ITF connectivity. Modern analogue‐based interpretations of nannofossil assemblages indicate that ITF configuration culminated ~3.54 Ma. A decrease in warm, oligotrophic taxa such as Umbilicosphaera sibogae, with a shift from Gephyrocapsa sp. to Reticulofenestra sp., and an increase of mesotrophic taxa (e.g., Umbilicosphaera jafari and Helicosphaera spp.) suggest that tropical Pacific ITF sources were replaced by cooler, fresher, northern Pacific waters. This initial tectonic reorganization enhanced the Indian Oceans sensitivity to orbitally forced cooling in the southern high latitudes culminating in the M2 glacial event (~3.3 Ma). After 3.3 Ma the restructured ITF established the boundary conditions for the inception of the Sahul‐Indian Ocean Bjerknes mechanism and increased the response to glacio‐eustatic variability

    Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene

    Get PDF
    Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems

    Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    Get PDF
    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers)
    corecore